The Alpha Geek – Geeking Out

PIR Motion Sensor

Project #29 – DFRobot – RHT And MQ – Mk13

——

#DonLucElectronics #DonLuc #DFRobot #BLESensorBeacon #AmbientLight #SoilMoisture #SHT40 #FireBeetle2ESP32E #EEPROM #RTC #SD #Display #Adafruit #ESP32 #IoT #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

RHT And MQ

——

RHT And MQ

——

RHT And MQ

——

Humidity and Temperature Sensor – RHT03

The RHT03 (also known by DHT-22) is a low cost humidity and temperature sensor with a single wire digital interface. The sensor is calibrated and doesn’t require extra components so you can get right to measuring relative humidity and temperature.

MQ Series Gas Sensor

The description of each MQ series gas sensor and its uses that follows will be helpful to anybody who wants to understand the foundations of gas sensing technology. The MQ Series Gas Sensor is a revolutionary technology designed for the detection of combustible gases, such as those used in industry and manufacturing. MQ sensor working principle involves detecting changes in electrical conductivity when specific gases come into contact with the sensor’s sensing element. This variety of semiconductor gas sensors makes it possible to measure concentrations of gasses such as alcohol, methane, propane, butane, and carbon monoxide.

Pololu Carrier for MQ Gas Sensors

This carrier board is designed to work with any of the MQ-series gas sensors, simplifying the interface from 6 to 3 pins—ground, power and analog voltage output +3-5 Volt. This board has two mounting holes and provides convenient pads for mounting the gas sensor’s required sensitivity-setting resistor.

DL2405Mk03

1 x DFRobot FireBeetle 2 ESP32-E
1 x Adafruit SHARP Memory Display
1 x Adafruit MicroSD card breakout board+
1 x MicroSD 16 GB
1 x Adafruit DS3231 Precision RTC FeatherWing – RTC
1 x Battery CR1220
4 x Pololu Carrier for MQ Gas Sensors
1 x SparkFun Hydrogen Gas Sensor – MQ-8
1 x 4.7K Ohm
1 x Pololu Carbon Monoxide & Flammable Gas Sensor – MQ-9
1 x 22k Ohm
1 x SparkFun Carbon Monoxide Gas Sensor – MQ-7
1 x 10K Ohm
1 x SparkFun Alcohol Gas Sensor – MQ-3
1 x 220k Ohm
1 x Temperature and Humidity Sensor – RHT03
1 x PIR Motion Sensor (JST)
1 x Switch
1 x 1K Ohm
1 x Gravity: Analog Soil Moisture Sensor
1 x Gravity: Analog Ambient Light Sensor
1 x Fermion: SHT40 Temperature & Humidity Sensor
3 x Fermion: BLE Sensor Beacon
3 x CR2032 Coin Cell Battery
1 x 1 x Lithium Ion Battery – 1000mAh
1 x Green LED
1 x Slide Switch
1 x SparkFun Serial Basic Breakout – CH340G
1 x SparkFun Cerberus USB Cable
1 x USB 3.1 Cable A to C

DFRobot FireBeetle 2 ESP32-E

LED – 2
DSCK – 4
DMOSI – 16
DSS – 17
SCK – 22
MOSI – 23
MISO – 19
CS – 13
SCL – 21
SDA – 22
LED – 14
RHT – 25
PIR – 26
SWI – 3
MQ8 = A0
MQ9 = A1
MQ7 = A2
MQ3 = A3
VIN – +3.3V
GND – GND

——

DL2405Mk03p.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
/****** Don Luc Electronics © ******
Software Version Information
Project #29 - DFRobot - RHT And MQ - Mk13
29-13
DL2404Mk03p.ino
1 x DFRobot FireBeetle 2 ESP32-E
1 x Adafruit SHARP Memory Display
1 x Adafruit MicroSD card breakout board+
1 x MicroSD 16 GB
1 x Adafruit DS3231 Precision RTC FeatherWing - RTC
1 x Battery CR1220
4 x Pololu Carrier for MQ Gas Sensors
1 x SparkFun Hydrogen Gas Sensor - MQ-8
1 x 4.7K Ohm
1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9
1 x 22k Ohm
1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7
1 x 10K Ohm
1 x SparkFun Alcohol Gas Sensor - MQ-3
1 x 220k Ohm
1 x Temperature and Humidity Sensor - RHT03
1 x PIR Motion Sensor (JST)
1 x Switch
1 x 1K Ohm
1 x Gravity: Analog Soil Moisture Sensor
1 x Gravity: Analog Ambient Light Sensor
1 x Fermion: SHT40 Temperature & Humidity Sensor
3 x Fermion: BLE Sensor Beacon
3 x CR2032 Coin Cell Battery
1 x 1 x Lithium Ion Battery - 1000mAh
1 x Green LED
1 x SparkFun Serial Basic Breakout - CH340G
1 x SparkFun Cerberus USB Cable
1 x USB 3.1 Cable A to C
*/
// Include the Library Code
// EEPROM Library to Read and Write EEPROM
// with Unique ID for Unit
#include "EEPROM.h"
// Wire
#include <Wire.h>
// Arduino
#include <Arduino.h>
// BLE Device
#include <BLEDevice.h>
// BLE Utils
#include <BLEUtils.h>
// BLEScan
#include <BLEScan.h>
// BLE Advertised Device
#include <BLEAdvertisedDevice.h>
// BLE Eddystone URL
#include <BLEEddystoneURL.h>
// BLE Eddystone TLM
#include <BLEEddystoneTLM.h>
// BLE Beacon
#include <BLEBeacon.h>
// DS3231 RTC Date and Time
#include <RTClib.h>
// SD Card
#include "FS.h"
#include "SD.h"
#include "SPI.h"
// SHARP Memory Display
#include <Adafruit_SharpMem.h>
#include <Adafruit_GFX.h>
// RHT Temperature and Humidity Sensor
#include <SparkFun_RHT03.h>
// ENDIAN_CHANGE
#define ENDIAN_CHANGE_U16(x) ((((x)&0xFF00) >> 8) + (((x)&0xFF) << 8))
// DS3231 RTC Date and Time
RTC_DS3231 rtc;
String sDate;
String sTime;
// MicroSD Card
const int chipSelect = 13;
String zzzzzz = "";
// SHARP Memory Display
#define SHARP_SCK 4
#define SHARP_MOSI 16
#define SHARP_SS 17
// Set the size of the display here, e.g. 144x168!
Adafruit_SharpMem display(SHARP_SCK, SHARP_MOSI, SHARP_SS, 144, 168);
// The currently-available SHARP Memory Display (144x168 pixels)
// requires > 4K of microcontroller RAM; it WILL NOT WORK on Arduino Uno
// or other <4K "classic" devices.
#define BLACK 0
#define WHITE 1
// LED Green
int iLEDGreen = 2;
// Define LED
int iLED = 14;
// Fermion: SHT40 Temperature & Humidity Sensor
// Temperature
float TemperatureData;
float Temperature;
// Humidity
float HumidityData;
float Humidity;
// Gravity: Analog Ambient Light Sensor
float Sensor_Data;
// SData => 1~6000 Lux
float SData;
// Gravity: Analog Soil Moisture Sensor
float SensorSM;
float SDataSM;
// In seconds
int scanTime = 5;
// BLE Scan
BLEScan *pBLEScan;
// RHT Temperature and Humidity Sensor
// RHT03 data pin Digital 25
const int RHT03_DATA_PIN = 25;
// This creates a RTH03 object, which we'll use to interact with the sensor
RHT03 rht;
float latestHumidity;
float latestTempC;
// Gas Sensors MQ
// Hydrogen Gas Sensor - MQ-8
int iMQ8 = A0;
int iMQ8Raw = 0;
int iMQ8ppm = 0;
// Two points are taken from the curve in datasheet.
// With these two points, a line is formed which is
// "approximately equivalent" to the original curve.
float H2Curve[3] = {2.3, 0.93,-1.44};
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int iMQ9 = A1;
int iMQ9Raw = 0;
int iMQ9ppm = 0;
// Carbon Monoxide Gas Sensor - MQ-7
int iMQ7 = A2;
int iMQ7Raw = 0;
int iMQ7ppm = 0;
// Alcohol Gas Sensor - MQ-3
int iMQ3 = A3;
int iMQ3Raw = 0;
int iMQ3ppm = 0;
// PIR Motion
// Motion detector
const int iMotion = 26;
// Proximity
int proximity = LOW;
String Det = "";
// Switch
int iSwitch = 3;
// Variable for reading the Switch status
int iSwitchState = 0;
// My Advertised Device Callbacks
class MyAdvertisedDeviceCallbacks : public BLEAdvertisedDeviceCallbacks
{
// onResult
void onResult(BLEAdvertisedDevice advertisedDevice)
{
// Advertised Device
if (advertisedDevice.haveName())
{
// Name: Fermion: Sensor Beacon
if(String(advertisedDevice.getName().c_str()) == "SHT40"){
// strManufacturerData
std::string strManufacturerData = advertisedDevice.getManufacturerData();
uint8_t cManufacturerData[100];
strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0);
// strManufacturerData.length
for (int i = 0; i < strManufacturerData.length(); i++)
{
// cManufacturerData[i]
cManufacturerData[i];
}
// TemperatureData
TemperatureData = int(cManufacturerData[2]<<8 | cManufacturerData[3]);
// HumidityData
HumidityData = int(cManufacturerData[5]<<8 | cManufacturerData[6]);
}
// Name: Fermion: Sensor Beacon
if(String(advertisedDevice.getName().c_str()) == "Fermion: Sensor Beacon"){
// strManufacturerData
std::string strManufacturerData = advertisedDevice.getManufacturerData();
uint8_t cManufacturerData[100];
strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0);
// strManufacturerData.length
for (int i = 0; i < strManufacturerData.length(); i++)
{
// cManufacturerData[i]
cManufacturerData[i];
}
// Sensor_Data
Sensor_Data = int(cManufacturerData[2]<<8 | cManufacturerData[3]);
}
// Name: Fermion: Sensor Beacon
if(String(advertisedDevice.getName().c_str()) == "Soil Moisture"){
// strManufacturerData
std::string strManufacturerData = advertisedDevice.getManufacturerData();
uint8_t cManufacturerData[100];
strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0);
// strManufacturerData.length
for (int i = 0; i < strManufacturerData.length(); i++)
{
// cManufacturerData[i]
cManufacturerData[i];
}
// SensorSM
SensorSM = int(cManufacturerData[2]<<8 | cManufacturerData[3]);
}
}
}
};
// EEPROM Unique ID Information
#define EEPROM_SIZE 64
String uid = "";
// Software Version Information
String sver = "29-13";
void loop() {
// DS3231 RTC Date and Time
isRTC();
// RHT Temperature and Humidity Sensor
isRHT03();
// Gas Sensors MQ
isGasSensor();
// isPIR Motion
isPIR();
// ScanResults
isBLEScanResults();
// Fermion: SHT40 Temperature & Humidity Sensor
isSHT40();
// Gravity: Analog Ambient Light Sensor
isAmbientLight();
// Soil Moisture
isSoilMoisture();
// Delay 4 Second
delay(4000);
// Read the state of the Switch value
iSwitchState = digitalRead(iSwitch);
// The Switch is HIGH:
if (iSwitchState == HIGH) {
// Display Date, Time, Temperature, Humidity
isDisplayDTTH();
} else {
// Display Temperature, Humidity, MQ, PIR
isDisplayDTMQPIR();
}
// MicroSD Card
isSD();
// iLED HIGH
digitalWrite(iLED, HIGH );
// Delay 1 Second
delay(1000);
}
/****** Don Luc Electronics © ****** Software Version Information Project #29 - DFRobot - RHT And MQ - Mk13 29-13 DL2404Mk03p.ino 1 x DFRobot FireBeetle 2 ESP32-E 1 x Adafruit SHARP Memory Display 1 x Adafruit MicroSD card breakout board+ 1 x MicroSD 16 GB 1 x Adafruit DS3231 Precision RTC FeatherWing - RTC 1 x Battery CR1220 4 x Pololu Carrier for MQ Gas Sensors 1 x SparkFun Hydrogen Gas Sensor - MQ-8 1 x 4.7K Ohm 1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9 1 x 22k Ohm 1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7 1 x 10K Ohm 1 x SparkFun Alcohol Gas Sensor - MQ-3 1 x 220k Ohm 1 x Temperature and Humidity Sensor - RHT03 1 x PIR Motion Sensor (JST) 1 x Switch 1 x 1K Ohm 1 x Gravity: Analog Soil Moisture Sensor 1 x Gravity: Analog Ambient Light Sensor 1 x Fermion: SHT40 Temperature & Humidity Sensor 3 x Fermion: BLE Sensor Beacon 3 x CR2032 Coin Cell Battery 1 x 1 x Lithium Ion Battery - 1000mAh 1 x Green LED 1 x SparkFun Serial Basic Breakout - CH340G 1 x SparkFun Cerberus USB Cable 1 x USB 3.1 Cable A to C */ // Include the Library Code // EEPROM Library to Read and Write EEPROM // with Unique ID for Unit #include "EEPROM.h" // Wire #include <Wire.h> // Arduino #include <Arduino.h> // BLE Device #include <BLEDevice.h> // BLE Utils #include <BLEUtils.h> // BLEScan #include <BLEScan.h> // BLE Advertised Device #include <BLEAdvertisedDevice.h> // BLE Eddystone URL #include <BLEEddystoneURL.h> // BLE Eddystone TLM #include <BLEEddystoneTLM.h> // BLE Beacon #include <BLEBeacon.h> // DS3231 RTC Date and Time #include <RTClib.h> // SD Card #include "FS.h" #include "SD.h" #include "SPI.h" // SHARP Memory Display #include <Adafruit_SharpMem.h> #include <Adafruit_GFX.h> // RHT Temperature and Humidity Sensor #include <SparkFun_RHT03.h> // ENDIAN_CHANGE #define ENDIAN_CHANGE_U16(x) ((((x)&0xFF00) >> 8) + (((x)&0xFF) << 8)) // DS3231 RTC Date and Time RTC_DS3231 rtc; String sDate; String sTime; // MicroSD Card const int chipSelect = 13; String zzzzzz = ""; // SHARP Memory Display #define SHARP_SCK 4 #define SHARP_MOSI 16 #define SHARP_SS 17 // Set the size of the display here, e.g. 144x168! Adafruit_SharpMem display(SHARP_SCK, SHARP_MOSI, SHARP_SS, 144, 168); // The currently-available SHARP Memory Display (144x168 pixels) // requires > 4K of microcontroller RAM; it WILL NOT WORK on Arduino Uno // or other <4K "classic" devices. #define BLACK 0 #define WHITE 1 // LED Green int iLEDGreen = 2; // Define LED int iLED = 14; // Fermion: SHT40 Temperature & Humidity Sensor // Temperature float TemperatureData; float Temperature; // Humidity float HumidityData; float Humidity; // Gravity: Analog Ambient Light Sensor float Sensor_Data; // SData => 1~6000 Lux float SData; // Gravity: Analog Soil Moisture Sensor float SensorSM; float SDataSM; // In seconds int scanTime = 5; // BLE Scan BLEScan *pBLEScan; // RHT Temperature and Humidity Sensor // RHT03 data pin Digital 25 const int RHT03_DATA_PIN = 25; // This creates a RTH03 object, which we'll use to interact with the sensor RHT03 rht; float latestHumidity; float latestTempC; // Gas Sensors MQ // Hydrogen Gas Sensor - MQ-8 int iMQ8 = A0; int iMQ8Raw = 0; int iMQ8ppm = 0; // Two points are taken from the curve in datasheet. // With these two points, a line is formed which is // "approximately equivalent" to the original curve. float H2Curve[3] = {2.3, 0.93,-1.44}; // Carbon Monoxide & Flammable Gas Sensor - MQ-9 int iMQ9 = A1; int iMQ9Raw = 0; int iMQ9ppm = 0; // Carbon Monoxide Gas Sensor - MQ-7 int iMQ7 = A2; int iMQ7Raw = 0; int iMQ7ppm = 0; // Alcohol Gas Sensor - MQ-3 int iMQ3 = A3; int iMQ3Raw = 0; int iMQ3ppm = 0; // PIR Motion // Motion detector const int iMotion = 26; // Proximity int proximity = LOW; String Det = ""; // Switch int iSwitch = 3; // Variable for reading the Switch status int iSwitchState = 0; // My Advertised Device Callbacks class MyAdvertisedDeviceCallbacks : public BLEAdvertisedDeviceCallbacks { // onResult void onResult(BLEAdvertisedDevice advertisedDevice) { // Advertised Device if (advertisedDevice.haveName()) { // Name: Fermion: Sensor Beacon if(String(advertisedDevice.getName().c_str()) == "SHT40"){ // strManufacturerData std::string strManufacturerData = advertisedDevice.getManufacturerData(); uint8_t cManufacturerData[100]; strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0); // strManufacturerData.length for (int i = 0; i < strManufacturerData.length(); i++) { // cManufacturerData[i] cManufacturerData[i]; } // TemperatureData TemperatureData = int(cManufacturerData[2]<<8 | cManufacturerData[3]); // HumidityData HumidityData = int(cManufacturerData[5]<<8 | cManufacturerData[6]); } // Name: Fermion: Sensor Beacon if(String(advertisedDevice.getName().c_str()) == "Fermion: Sensor Beacon"){ // strManufacturerData std::string strManufacturerData = advertisedDevice.getManufacturerData(); uint8_t cManufacturerData[100]; strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0); // strManufacturerData.length for (int i = 0; i < strManufacturerData.length(); i++) { // cManufacturerData[i] cManufacturerData[i]; } // Sensor_Data Sensor_Data = int(cManufacturerData[2]<<8 | cManufacturerData[3]); } // Name: Fermion: Sensor Beacon if(String(advertisedDevice.getName().c_str()) == "Soil Moisture"){ // strManufacturerData std::string strManufacturerData = advertisedDevice.getManufacturerData(); uint8_t cManufacturerData[100]; strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0); // strManufacturerData.length for (int i = 0; i < strManufacturerData.length(); i++) { // cManufacturerData[i] cManufacturerData[i]; } // SensorSM SensorSM = int(cManufacturerData[2]<<8 | cManufacturerData[3]); } } } }; // EEPROM Unique ID Information #define EEPROM_SIZE 64 String uid = ""; // Software Version Information String sver = "29-13"; void loop() { // DS3231 RTC Date and Time isRTC(); // RHT Temperature and Humidity Sensor isRHT03(); // Gas Sensors MQ isGasSensor(); // isPIR Motion isPIR(); // ScanResults isBLEScanResults(); // Fermion: SHT40 Temperature & Humidity Sensor isSHT40(); // Gravity: Analog Ambient Light Sensor isAmbientLight(); // Soil Moisture isSoilMoisture(); // Delay 4 Second delay(4000); // Read the state of the Switch value iSwitchState = digitalRead(iSwitch); // The Switch is HIGH: if (iSwitchState == HIGH) { // Display Date, Time, Temperature, Humidity isDisplayDTTH(); } else { // Display Temperature, Humidity, MQ, PIR isDisplayDTMQPIR(); } // MicroSD Card isSD(); // iLED HIGH digitalWrite(iLED, HIGH ); // Delay 1 Second delay(1000); }
/****** Don Luc Electronics © ******
Software Version Information
Project #29 - DFRobot - RHT And MQ - Mk13
29-13
DL2404Mk03p.ino
1 x DFRobot FireBeetle 2 ESP32-E
1 x Adafruit SHARP Memory Display
1 x Adafruit MicroSD card breakout board+
1 x MicroSD 16 GB
1 x Adafruit DS3231 Precision RTC FeatherWing - RTC
1 x Battery CR1220
4 x Pololu Carrier for MQ Gas Sensors
1 x SparkFun Hydrogen Gas Sensor - MQ-8
1 x 4.7K Ohm
1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9
1 x 22k Ohm
1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7
1 x 10K Ohm
1 x SparkFun Alcohol Gas Sensor - MQ-3
1 x 220k Ohm
1 x Temperature and Humidity Sensor - RHT03
1 x PIR Motion Sensor (JST)
1 x Switch
1 x 1K Ohm
1 x Gravity: Analog Soil Moisture Sensor
1 x Gravity: Analog Ambient Light Sensor
1 x Fermion: SHT40 Temperature & Humidity Sensor
3 x Fermion: BLE Sensor Beacon
3 x CR2032 Coin Cell Battery
1 x 1 x Lithium Ion Battery - 1000mAh
1 x Green LED
1 x SparkFun Serial Basic Breakout - CH340G
1 x SparkFun Cerberus USB Cable
1 x USB 3.1 Cable A to C
*/

// Include the Library Code
// EEPROM Library to Read and Write EEPROM
// with Unique ID for Unit
#include "EEPROM.h"
// Wire
#include <Wire.h>
// Arduino
#include <Arduino.h>
// BLE Device
#include <BLEDevice.h>
// BLE Utils
#include <BLEUtils.h>
// BLEScan
#include <BLEScan.h>
// BLE Advertised Device
#include <BLEAdvertisedDevice.h>
// BLE Eddystone URL
#include <BLEEddystoneURL.h>
// BLE Eddystone TLM
#include <BLEEddystoneTLM.h>
// BLE Beacon
#include <BLEBeacon.h>
// DS3231 RTC Date and Time
#include <RTClib.h>
// SD Card
#include "FS.h"
#include "SD.h"
#include "SPI.h"
// SHARP Memory Display
#include <Adafruit_SharpMem.h>
#include <Adafruit_GFX.h>
// RHT Temperature and Humidity Sensor
#include <SparkFun_RHT03.h>

// ENDIAN_CHANGE
#define ENDIAN_CHANGE_U16(x) ((((x)&0xFF00) >> 8) + (((x)&0xFF) << 8))

// DS3231 RTC Date and Time
RTC_DS3231 rtc;
String sDate;
String sTime;

// MicroSD Card
const int chipSelect = 13;
String zzzzzz = "";

// SHARP Memory Display
#define SHARP_SCK  4
#define SHARP_MOSI 16
#define SHARP_SS   17
// Set the size of the display here, e.g. 144x168!
Adafruit_SharpMem display(SHARP_SCK, SHARP_MOSI, SHARP_SS, 144, 168);
// The currently-available SHARP Memory Display (144x168 pixels)
// requires > 4K of microcontroller RAM; it WILL NOT WORK on Arduino Uno
// or other <4K "classic" devices.
#define BLACK 0
#define WHITE 1

// LED Green
int iLEDGreen = 2;

// Define LED
int iLED = 14;

// Fermion: SHT40 Temperature & Humidity Sensor
// Temperature
float TemperatureData;
float Temperature;
// Humidity
float HumidityData;
float Humidity;
// Gravity: Analog Ambient Light Sensor
float Sensor_Data;
// SData => 1~6000 Lux
float SData;
// Gravity: Analog Soil Moisture Sensor
float SensorSM;
float SDataSM;
// In seconds
int scanTime = 5;
// BLE Scan
BLEScan *pBLEScan;

// RHT Temperature and Humidity Sensor
// RHT03 data pin Digital 25
const int RHT03_DATA_PIN = 25;
// This creates a RTH03 object, which we'll use to interact with the sensor
RHT03 rht;
float latestHumidity;
float latestTempC;

// Gas Sensors MQ
// Hydrogen Gas Sensor - MQ-8
int iMQ8 = A0;
int iMQ8Raw = 0;
int iMQ8ppm = 0;
// Two points are taken from the curve in datasheet.
// With these two points, a line is formed which is
// "approximately equivalent" to the original curve.
float H2Curve[3] = {2.3, 0.93,-1.44};

// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int iMQ9 = A1;
int iMQ9Raw = 0;
int iMQ9ppm = 0;

// Carbon Monoxide Gas Sensor - MQ-7
int iMQ7 = A2;
int iMQ7Raw = 0;
int iMQ7ppm = 0;

// Alcohol Gas Sensor - MQ-3
int iMQ3 = A3;
int iMQ3Raw = 0;
int iMQ3ppm = 0;

// PIR Motion
// Motion detector
const int iMotion = 26;
// Proximity
int proximity = LOW;
String Det = "";

// Switch
int iSwitch = 3;
// Variable for reading the Switch status
int iSwitchState = 0;

// My Advertised Device Callbacks
class MyAdvertisedDeviceCallbacks : public BLEAdvertisedDeviceCallbacks
{

    // onResult
    void onResult(BLEAdvertisedDevice advertisedDevice)
    {
      // Advertised Device
      if (advertisedDevice.haveName())
      {
        // Name: Fermion: Sensor Beacon
        if(String(advertisedDevice.getName().c_str()) == "SHT40"){
          
          // strManufacturerData
          std::string strManufacturerData = advertisedDevice.getManufacturerData();
          uint8_t cManufacturerData[100];
          strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0);
          
          // strManufacturerData.length
          for (int i = 0; i < strManufacturerData.length(); i++)
          {

             // cManufacturerData[i]
             cManufacturerData[i];
             
          }

          // TemperatureData
          TemperatureData = int(cManufacturerData[2]<<8 | cManufacturerData[3]);
          // HumidityData
          HumidityData = int(cManufacturerData[5]<<8 | cManufacturerData[6]);
   
        }
        // Name: Fermion: Sensor Beacon
        if(String(advertisedDevice.getName().c_str()) == "Fermion: Sensor Beacon"){
          
          // strManufacturerData
          std::string strManufacturerData = advertisedDevice.getManufacturerData();
          uint8_t cManufacturerData[100];
          strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0);
          
          // strManufacturerData.length
          for (int i = 0; i < strManufacturerData.length(); i++)
          {

             // cManufacturerData[i]
             cManufacturerData[i];
             
          }

          // Sensor_Data
          Sensor_Data = int(cManufacturerData[2]<<8 | cManufacturerData[3]);
   
        }
        // Name: Fermion: Sensor Beacon
        if(String(advertisedDevice.getName().c_str()) == "Soil Moisture"){
          
          // strManufacturerData
          std::string strManufacturerData = advertisedDevice.getManufacturerData();
          uint8_t cManufacturerData[100];
          strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0);
          
          // strManufacturerData.length
          for (int i = 0; i < strManufacturerData.length(); i++)
          {

             // cManufacturerData[i]
             cManufacturerData[i];
             
          }

          // SensorSM
          SensorSM = int(cManufacturerData[2]<<8 | cManufacturerData[3]);
   
        }                              
      }
    }
};

// EEPROM Unique ID Information
#define EEPROM_SIZE 64
String uid = "";

// Software Version Information
String sver = "29-13";

void loop() {

  // DS3231 RTC Date and Time
  isRTC();

  // RHT Temperature and Humidity Sensor
  isRHT03();

  // Gas Sensors MQ
  isGasSensor();

  // isPIR Motion
  isPIR();
  
  // ScanResults
  isBLEScanResults();

  // Fermion: SHT40 Temperature & Humidity Sensor
  isSHT40();

  // Gravity: Analog Ambient Light Sensor
  isAmbientLight();

  // Soil Moisture
  isSoilMoisture();

  // Delay 4 Second
  delay(4000);

  // Read the state of the Switch value
  iSwitchState = digitalRead(iSwitch);
  
  // The Switch is HIGH:
  if (iSwitchState == HIGH) {

    // Display Date, Time, Temperature, Humidity
    isDisplayDTTH();
  
  } else {
    
    // Display Temperature, Humidity, MQ, PIR
    isDisplayDTMQPIR();

    
  }
  
  // MicroSD Card
  isSD();

  // iLED HIGH
  digitalWrite(iLED, HIGH );

  // Delay 1 Second
  delay(1000);

}

getAmbientLight.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Gravity: Analog Ambient Light Sensor
// Ambient Light
void isAmbientLight(){
// Analog Ambient Light Sensor
// SData => 1~6000 Lux
SData = map(Sensor_Data, 1, 3000, 1, 6000);
}
// Gravity: Analog Ambient Light Sensor // Ambient Light void isAmbientLight(){ // Analog Ambient Light Sensor // SData => 1~6000 Lux SData = map(Sensor_Data, 1, 3000, 1, 6000); }
// Gravity: Analog Ambient Light Sensor
// Ambient Light
void isAmbientLight(){

  // Analog Ambient Light Sensor
  // SData => 1~6000 Lux
  SData = map(Sensor_Data, 1, 3000, 1, 6000);

}

getBLEScan.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// getBLEScan
// Setup BLE Scan
void isSetupBLEScan(){
// BLE Device
BLEDevice::init("");
// Create new scan
pBLEScan = BLEDevice::getScan();
// Set Advertised Device Callbacks
pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks());
// Active scan uses more power, but get results faster
pBLEScan->setActiveScan(true);
// Set Interval
pBLEScan->setInterval(100);
// Less or equal setInterval value
pBLEScan->setWindow(99);
}
// BLE Scan Results
void isBLEScanResults(){
// Put your main code here, to run repeatedly:
BLEScanResults foundDevices = pBLEScan->start(scanTime, false);
// Delete results fromBLEScan buffer to release memory
pBLEScan->clearResults();
}
// getBLEScan // Setup BLE Scan void isSetupBLEScan(){ // BLE Device BLEDevice::init(""); // Create new scan pBLEScan = BLEDevice::getScan(); // Set Advertised Device Callbacks pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks()); // Active scan uses more power, but get results faster pBLEScan->setActiveScan(true); // Set Interval pBLEScan->setInterval(100); // Less or equal setInterval value pBLEScan->setWindow(99); } // BLE Scan Results void isBLEScanResults(){ // Put your main code here, to run repeatedly: BLEScanResults foundDevices = pBLEScan->start(scanTime, false); // Delete results fromBLEScan buffer to release memory pBLEScan->clearResults(); }
// getBLEScan
// Setup BLE Scan
void isSetupBLEScan(){

  // BLE Device
  BLEDevice::init("");
  // Create new scan
  pBLEScan = BLEDevice::getScan();
  // Set Advertised Device Callbacks
  pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks());
  // Active scan uses more power, but get results faster
  pBLEScan->setActiveScan(true);
  // Set Interval
  pBLEScan->setInterval(100);
  // Less or equal setInterval value
  pBLEScan->setWindow(99);
  
}
// BLE Scan Results
void isBLEScanResults(){

  // Put your main code here, to run repeatedly:
  BLEScanResults foundDevices = pBLEScan->start(scanTime, false);
  // Delete results fromBLEScan buffer to release memory
  pBLEScan->clearResults();
  
}

getDisplay.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// SHARP Memory Display
// SHARP Memory Display - UID
void isDisplayUID() {
// Text Display
// Clear Display
display.clearDisplay();
display.setRotation(4);
display.setTextSize(3);
display.setTextColor(BLACK);
// Don Luc Electronics
display.setCursor(0,10);
display.println( "Don Luc" );
display.setTextSize(2);
display.setCursor(0,40);
display.println( "Electronics" );
// Version
//display.setTextSize(3);
display.setCursor(0,70);
display.println( "Version" );
//display.setTextSize(2);
display.setCursor(0,95);
display.println( sver );
// EEPROM
display.setCursor(0,120);
display.println( "EEPROM" );
display.setCursor(0,140);
display.println( uid );
// Refresh
display.refresh();
delay( 100 );
}
// Display Date, Time, Temperature, Humidity, Ambient Light, Soil Moisture
void isDisplayDTTH() {
// Text Display Date
// Clear Display
display.clearDisplay();
display.setRotation(4);
display.setTextSize(2);
display.setTextColor(BLACK);
// Date
display.setCursor(0,5);
display.println( sDate );
// Time
display.setCursor(0,30);
display.println( sTime );
// Temperature
display.setCursor(0,55);
display.print( Temperature );
display.println( "C" );
// Humidity
display.setCursor(0,80);
display.print( Humidity );
display.println( "%" );
// Lux
display.setCursor(0,105);
display.println( SData );
// Soil Moisture
display.setCursor(0,130);
display.println( SDataSM );
// Refresh
display.refresh();
delay( 100 );
}
// Display Temperature, Humidity, MQ, PIR
void isDisplayDTMQPIR() {
// Text Display Date
// Clear Display
display.clearDisplay();
display.setRotation(4);
display.setTextSize(2);
display.setTextColor(BLACK);
// Temperature
display.setCursor(0,5);
display.print( latestTempC );
display.println( "C" );
// Humidity
display.setCursor(0,30);
display.print( latestHumidity );
display.println( "%" );
// MQ-8
display.setCursor(0,55);
display.print( "MQ-8: " );
display.print( iMQ8ppm );
display.println( " PPM" );
// MQ-9
display.setCursor(0,80);
display.print( "MQ-9: " );
display.print( iMQ9ppm );
display.println( " PPM" );
// MQ-7
display.setCursor(0,105);
display.print( "MQ-7: " );
display.print( iMQ7ppm );
display.println( " PPM" );
// MQ-3
display.setCursor(0,130);
display.print( "MQ-3: " );
display.print( iMQ3ppm );
display.println( "%" );
// PIR
display.setCursor(0,145);
display.println( Det );
// Refresh
display.refresh();
delay( 100 );
}
// SHARP Memory Display // SHARP Memory Display - UID void isDisplayUID() { // Text Display // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(3); display.setTextColor(BLACK); // Don Luc Electronics display.setCursor(0,10); display.println( "Don Luc" ); display.setTextSize(2); display.setCursor(0,40); display.println( "Electronics" ); // Version //display.setTextSize(3); display.setCursor(0,70); display.println( "Version" ); //display.setTextSize(2); display.setCursor(0,95); display.println( sver ); // EEPROM display.setCursor(0,120); display.println( "EEPROM" ); display.setCursor(0,140); display.println( uid ); // Refresh display.refresh(); delay( 100 ); } // Display Date, Time, Temperature, Humidity, Ambient Light, Soil Moisture void isDisplayDTTH() { // Text Display Date // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(2); display.setTextColor(BLACK); // Date display.setCursor(0,5); display.println( sDate ); // Time display.setCursor(0,30); display.println( sTime ); // Temperature display.setCursor(0,55); display.print( Temperature ); display.println( "C" ); // Humidity display.setCursor(0,80); display.print( Humidity ); display.println( "%" ); // Lux display.setCursor(0,105); display.println( SData ); // Soil Moisture display.setCursor(0,130); display.println( SDataSM ); // Refresh display.refresh(); delay( 100 ); } // Display Temperature, Humidity, MQ, PIR void isDisplayDTMQPIR() { // Text Display Date // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(2); display.setTextColor(BLACK); // Temperature display.setCursor(0,5); display.print( latestTempC ); display.println( "C" ); // Humidity display.setCursor(0,30); display.print( latestHumidity ); display.println( "%" ); // MQ-8 display.setCursor(0,55); display.print( "MQ-8: " ); display.print( iMQ8ppm ); display.println( " PPM" ); // MQ-9 display.setCursor(0,80); display.print( "MQ-9: " ); display.print( iMQ9ppm ); display.println( " PPM" ); // MQ-7 display.setCursor(0,105); display.print( "MQ-7: " ); display.print( iMQ7ppm ); display.println( " PPM" ); // MQ-3 display.setCursor(0,130); display.print( "MQ-3: " ); display.print( iMQ3ppm ); display.println( "%" ); // PIR display.setCursor(0,145); display.println( Det ); // Refresh display.refresh(); delay( 100 ); }
// SHARP Memory Display
// SHARP Memory Display - UID
void isDisplayUID() {

    // Text Display 
    // Clear Display
    display.clearDisplay();
    display.setRotation(4);
    display.setTextSize(3);
    display.setTextColor(BLACK);
    // Don Luc Electronics
    display.setCursor(0,10);
    display.println( "Don Luc" );
    display.setTextSize(2);
    display.setCursor(0,40);
    display.println( "Electronics" );
    // Version
    //display.setTextSize(3);
    display.setCursor(0,70);
    display.println( "Version" );
    //display.setTextSize(2);
    display.setCursor(0,95);   
    display.println( sver );
    // EEPROM
    display.setCursor(0,120);
    display.println( "EEPROM" );
    display.setCursor(0,140);   
    display.println( uid );
    // Refresh
    display.refresh();
    delay( 100 );
    
}
// Display Date, Time, Temperature, Humidity, Ambient Light, Soil Moisture
void isDisplayDTTH() {

    // Text Display Date
    // Clear Display
    display.clearDisplay();
    display.setRotation(4);
    display.setTextSize(2);
    display.setTextColor(BLACK);
    // Date
    display.setCursor(0,5);
    display.println( sDate );
    // Time
    display.setCursor(0,30);
    display.println( sTime );
    // Temperature
    display.setCursor(0,55);
    display.print( Temperature );
    display.println( "C" );
    // Humidity
    display.setCursor(0,80);
    display.print( Humidity );
    display.println( "%" );
    // Lux
    display.setCursor(0,105);
    display.println( SData );
    // Soil Moisture
    display.setCursor(0,130);
    display.println( SDataSM );
    // Refresh
    display.refresh();
    delay( 100 );

}
// Display Temperature, Humidity, MQ, PIR
void isDisplayDTMQPIR() {

    // Text Display Date
    // Clear Display
    display.clearDisplay();
    display.setRotation(4);
    display.setTextSize(2);
    display.setTextColor(BLACK);
    // Temperature
    display.setCursor(0,5);
    display.print( latestTempC );
    display.println( "C" );
    // Humidity
    display.setCursor(0,30);
    display.print( latestHumidity );
    display.println( "%" );
    // MQ-8
    display.setCursor(0,55);
    display.print( "MQ-8: " );
    display.print( iMQ8ppm );
    display.println( " PPM" );
    // MQ-9
    display.setCursor(0,80);
    display.print( "MQ-9: " );
    display.print( iMQ9ppm );
    display.println( " PPM" );
    // MQ-7
    display.setCursor(0,105);
    display.print( "MQ-7: " );
    display.print( iMQ7ppm );
    display.println( " PPM" );
    // MQ-3
    display.setCursor(0,130);
    display.print( "MQ-3: " );
    display.print( iMQ3ppm );
    display.println( "%" );
    // PIR
    display.setCursor(0,145);
    display.println( Det );
    // Refresh
    display.refresh();
    delay( 100 );

}

getEEPROM.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// EEPROM
// isUID EEPROM Unique ID
void isUID()
{
// Is Unit ID
uid = "";
for (int x = 0; x < 7; x++)
{
uid = uid + char(EEPROM.read(x));
}
}
// EEPROM // isUID EEPROM Unique ID void isUID() { // Is Unit ID uid = ""; for (int x = 0; x < 7; x++) { uid = uid + char(EEPROM.read(x)); } }
// EEPROM
// isUID EEPROM Unique ID
void isUID()
{
  
  // Is Unit ID
  uid = "";
  for (int x = 0; x < 7; x++)
  {
    uid = uid + char(EEPROM.read(x));
  }
  
}

getGasSensorMQ.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Gas Sensors MQ
// Gas Sensor
void isGasSensor() {
// Read in analog value from each gas sensors
// Hydrogen Gas Sensor - MQ-8
iMQ8Raw = analogRead( iMQ8 );
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
iMQ9Raw = analogRead( iMQ9 );
// Carbon Monoxide Gas Sensor - MQ-7
iMQ7Raw = analogRead( iMQ7 );
// Alcohol Gas Sensor - MQ-3
iMQ3Raw = analogRead( iMQ3 );
// Caclulate the PPM of each gas sensors
// Hydrogen Gas Sensor - MQ-8
iMQ8ppm = isMQ8( iMQ8Raw );
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
iMQ9ppm = isMQ9( iMQ9Raw );
// Carbon Monoxide Gas Sensor - MQ-7
iMQ7ppm = isMQ7( iMQ7Raw );
// Alcohol Gas Sensor - MQ-3
iMQ3ppm = isMQ3( iMQ3Raw );
}
// Hydrogen Gas Sensor - MQ-8 - PPM
int isMQ8(double rawValue) {
// RvRo
double RvRo = rawValue * (3.3 / 4095);
double ppm = 3.027*exp(1.0698*( RvRo ));
return ppm;
//return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0])));
}
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int isMQ9(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double ppm = 3.027*exp(1.0698*( RvRo ));
return ppm;
}
// Carbon Monoxide Gas Sensor - MQ-7
int isMQ7(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double ppm = 3.027*exp(1.0698*( RvRo ));
return ppm;
}
// Alcohol Gas Sensor - MQ-3
int isMQ3(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double bac = RvRo * 0.21;
return bac;
}
// Gas Sensors MQ // Gas Sensor void isGasSensor() { // Read in analog value from each gas sensors // Hydrogen Gas Sensor - MQ-8 iMQ8Raw = analogRead( iMQ8 ); // Carbon Monoxide & Flammable Gas Sensor - MQ-9 iMQ9Raw = analogRead( iMQ9 ); // Carbon Monoxide Gas Sensor - MQ-7 iMQ7Raw = analogRead( iMQ7 ); // Alcohol Gas Sensor - MQ-3 iMQ3Raw = analogRead( iMQ3 ); // Caclulate the PPM of each gas sensors // Hydrogen Gas Sensor - MQ-8 iMQ8ppm = isMQ8( iMQ8Raw ); // Carbon Monoxide & Flammable Gas Sensor - MQ-9 iMQ9ppm = isMQ9( iMQ9Raw ); // Carbon Monoxide Gas Sensor - MQ-7 iMQ7ppm = isMQ7( iMQ7Raw ); // Alcohol Gas Sensor - MQ-3 iMQ3ppm = isMQ3( iMQ3Raw ); } // Hydrogen Gas Sensor - MQ-8 - PPM int isMQ8(double rawValue) { // RvRo double RvRo = rawValue * (3.3 / 4095); double ppm = 3.027*exp(1.0698*( RvRo )); return ppm; //return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0]))); } // Carbon Monoxide & Flammable Gas Sensor - MQ-9 int isMQ9(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double ppm = 3.027*exp(1.0698*( RvRo )); return ppm; } // Carbon Monoxide Gas Sensor - MQ-7 int isMQ7(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double ppm = 3.027*exp(1.0698*( RvRo )); return ppm; } // Alcohol Gas Sensor - MQ-3 int isMQ3(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double bac = RvRo * 0.21; return bac; }
// Gas Sensors MQ
// Gas Sensor
void isGasSensor() {

  // Read in analog value from each gas sensors
  
  // Hydrogen Gas Sensor - MQ-8
  iMQ8Raw = analogRead( iMQ8 );

  // Carbon Monoxide & Flammable Gas Sensor - MQ-9
  iMQ9Raw = analogRead( iMQ9 );  

  // Carbon Monoxide Gas Sensor - MQ-7
  iMQ7Raw = analogRead( iMQ7 );

  // Alcohol Gas Sensor - MQ-3
  iMQ3Raw = analogRead( iMQ3 );
  
  // Caclulate the PPM of each gas sensors

  // Hydrogen Gas Sensor - MQ-8
  iMQ8ppm = isMQ8( iMQ8Raw );

  // Carbon Monoxide & Flammable Gas Sensor - MQ-9
  iMQ9ppm = isMQ9( iMQ9Raw ); 

  // Carbon Monoxide Gas Sensor - MQ-7
  iMQ7ppm = isMQ7( iMQ7Raw ); 

  // Alcohol Gas Sensor - MQ-3
  iMQ3ppm = isMQ3( iMQ3Raw ); 

}
// Hydrogen Gas Sensor - MQ-8 - PPM
int isMQ8(double rawValue) {

  // RvRo
  double RvRo = rawValue * (3.3 / 4095);

  double ppm = 3.027*exp(1.0698*( RvRo ));
  return ppm;
  
  //return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0])));
  
}
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int isMQ9(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double ppm = 3.027*exp(1.0698*( RvRo ));
  return ppm;
  
}
// Carbon Monoxide Gas Sensor - MQ-7
int isMQ7(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double ppm = 3.027*exp(1.0698*( RvRo ));
  return ppm;
  
}
// Alcohol Gas Sensor - MQ-3
int isMQ3(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double bac = RvRo * 0.21;
  return bac;
  
}

getPIR.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// PIR Motion
// Setup PIR
void isSetupPIR() {
// Setup PIR Montion
pinMode(iMotion, INPUT_PULLUP);
}
// isPIR Motion
void isPIR() {
// Proximity
proximity = digitalRead(iMotion);
if (proximity == LOW)
{
// PIR Motion Sensor's LOW, Motion is detected
Det = "Motion Yes";
}
else
{
// PIR Motion Sensor's HIGH
Det = "No";
}
}
// PIR Motion // Setup PIR void isSetupPIR() { // Setup PIR Montion pinMode(iMotion, INPUT_PULLUP); } // isPIR Motion void isPIR() { // Proximity proximity = digitalRead(iMotion); if (proximity == LOW) { // PIR Motion Sensor's LOW, Motion is detected Det = "Motion Yes"; } else { // PIR Motion Sensor's HIGH Det = "No"; } }
// PIR Motion
// Setup PIR
void isSetupPIR() {

  // Setup PIR Montion
  pinMode(iMotion, INPUT_PULLUP);
  
}
// isPIR Motion
void isPIR() {

  // Proximity
  proximity = digitalRead(iMotion);
  if (proximity == LOW) 
  {

    // PIR Motion Sensor's LOW, Motion is detected
    Det = "Motion Yes";

  }
  else
  {

    // PIR Motion Sensor's HIGH
    Det = "No";
    
  }
  
}

getRHT.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// RHT Temperature and Humidity Sensor
// Setup RHT Temperature and Humidity Sensor
void isSetupRTH03() {
// RHT Temperature and Humidity Sensor
// Call rht.begin() to initialize the sensor and our data pin
rht.begin(RHT03_DATA_PIN);
}
// RHT Temperature and Humidity Sensor
void isRHT03(){
// Call rht.update() to get new humidity and temperature values from the sensor.
int updateRet = rht.update();
// The humidity(), tempC(), and tempF() functions can be called -- after
// a successful update() -- to get the last humidity and temperature value
latestHumidity = rht.humidity();
latestTempC = rht.tempC();
}
// RHT Temperature and Humidity Sensor // Setup RHT Temperature and Humidity Sensor void isSetupRTH03() { // RHT Temperature and Humidity Sensor // Call rht.begin() to initialize the sensor and our data pin rht.begin(RHT03_DATA_PIN); } // RHT Temperature and Humidity Sensor void isRHT03(){ // Call rht.update() to get new humidity and temperature values from the sensor. int updateRet = rht.update(); // The humidity(), tempC(), and tempF() functions can be called -- after // a successful update() -- to get the last humidity and temperature value latestHumidity = rht.humidity(); latestTempC = rht.tempC(); }
// RHT Temperature and Humidity Sensor
// Setup RHT Temperature and Humidity Sensor
void isSetupRTH03() {

  // RHT Temperature and Humidity Sensor
  // Call rht.begin() to initialize the sensor and our data pin
  rht.begin(RHT03_DATA_PIN);
  
}
// RHT Temperature and Humidity Sensor
void isRHT03(){

  // Call rht.update() to get new humidity and temperature values from the sensor.
  int updateRet = rht.update();

  // The humidity(), tempC(), and tempF() functions can be called -- after 
  // a successful update() -- to get the last humidity and temperature value 
  latestHumidity = rht.humidity();
  latestTempC = rht.tempC();

}

getRTC.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// DS3231 RTC Date and Time
// Setup DS3231 RTC
void isSetupRTC() {
if (! rtc.begin()) {
while (1);
}
if (rtc.lostPower()) {
// Following line sets the RTC to the date & time this sketch was compiled
rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
// This line sets the RTC with an explicit date & time, for example to set
// January 21, 2014 at 3am you would call:
// rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
}
}
// DS3231 RTC Date and Time
void isRTC(){
// Date and Time
sDate = "";
sTime = "";
// Date Time
DateTime now = rtc.now();
// sData
sDate += String(now.year(), DEC);
sDate += "/";
sDate += String(now.month(), DEC);
sDate += "/";
sDate += String(now.day(), DEC);
// sTime
sTime += String(now.hour(), DEC);
sTime += ":";
sTime += String(now.minute(), DEC);
sTime += ":";
sTime += String(now.second(), DEC);
}
// DS3231 RTC Date and Time // Setup DS3231 RTC void isSetupRTC() { if (! rtc.begin()) { while (1); } if (rtc.lostPower()) { // Following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0)); } } // DS3231 RTC Date and Time void isRTC(){ // Date and Time sDate = ""; sTime = ""; // Date Time DateTime now = rtc.now(); // sData sDate += String(now.year(), DEC); sDate += "/"; sDate += String(now.month(), DEC); sDate += "/"; sDate += String(now.day(), DEC); // sTime sTime += String(now.hour(), DEC); sTime += ":"; sTime += String(now.minute(), DEC); sTime += ":"; sTime += String(now.second(), DEC); }
// DS3231 RTC Date and Time
// Setup DS3231 RTC
void isSetupRTC() {

  if (! rtc.begin()) {
    while (1);
  }

  if (rtc.lostPower()) {
    // Following line sets the RTC to the date & time this sketch was compiled
    rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
    // This line sets the RTC with an explicit date & time, for example to set
    // January 21, 2014 at 3am you would call:
    // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
  }
  
}
// DS3231 RTC Date and Time
void isRTC(){
 
    // Date and Time
    sDate = "";
    sTime = "";
    // Date Time
    DateTime now = rtc.now();

    // sData
    sDate += String(now.year(), DEC);
    sDate += "/";
    sDate += String(now.month(), DEC);
    sDate += "/";
    sDate += String(now.day(), DEC);

    // sTime
    sTime += String(now.hour(), DEC);
    sTime += ":";
    sTime += String(now.minute(), DEC);
    sTime += ":";
    sTime += String(now.second(), DEC);

}

getSD.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// MicroSD Card
// MicroSD Setup
void setupSD() {
// MicroSD Card
pinMode( chipSelect , OUTPUT );
if(!SD.begin( chipSelect )){
;
return;
}
uint8_t cardType = SD.cardType();
// CARD NONE
if(cardType == CARD_NONE){
;
return;
}
// SD Card Type
if(cardType == CARD_MMC){
;
} else if(cardType == CARD_SD){
;
} else if(cardType == CARD_SDHC){
;
} else {
;
}
// Size
uint64_t cardSize = SD.cardSize() / (1024 * 1024);
}
// MicroSD Card
void isSD() {
zzzzzz = "";
// DFR|EEPROM Unique ID|Version|Date|Time|Temperature|Humidity|Lux|
// Soil Moisture|Temperature|Humidity|MQ8|MQ9|MQ7|MQ3|PIR|*\r
zzzzzz = "DFR|" + uid + "|" + sver + "|" + sDate + "|" + sTime + "|"
+ String(Temperature) + "C|" + String(Humidity) + "%|"
+ String(SData) + "|" + String(SDataSM) + "|" + String(latestTempC) + "C|"
+ String(latestHumidity) + "%|" + String(iMQ8ppm) +
" PPM|" + String(iMQ9ppm) + " PPM|" + String(iMQ7ppm) + " PPM|" +
String(iMQ3ppm) + "%|" + String(Det) + "|*\r";
// msg + 1
char msg[zzzzzz.length() + 1];
zzzzzz.toCharArray(msg, zzzzzz.length() + 1);
// Append File
appendFile(SD, "/dfrdata.txt", msg );
}
// List Dir
void listDir(fs::FS &fs, const char * dirname, uint8_t levels){
// List Dir
dirname;
File root = fs.open(dirname);
if(!root){
return;
}
if(!root.isDirectory()){
return;
}
File file = root.openNextFile();
while(file){
if(file.isDirectory()){
file.name();
if(levels){
listDir(fs, file.name(), levels -1);
}
} else {
file.name();
file.size();
}
file = root.openNextFile();
}
}
// Write File
void writeFile(fs::FS &fs, const char * path, const char * message){
// Write File
path;
File file = fs.open(path, FILE_WRITE);
if(!file){
return;
}
if(file.print(message)){
;
} else {
;
}
file.close();
}
// Append File
void appendFile(fs::FS &fs, const char * path, const char * message){
// Append File
path;
File file = fs.open(path, FILE_APPEND);
if(!file){
return;
}
if(file.print(message)){
;
} else {
;
}
file.close();
}
// MicroSD Card // MicroSD Setup void setupSD() { // MicroSD Card pinMode( chipSelect , OUTPUT ); if(!SD.begin( chipSelect )){ ; return; } uint8_t cardType = SD.cardType(); // CARD NONE if(cardType == CARD_NONE){ ; return; } // SD Card Type if(cardType == CARD_MMC){ ; } else if(cardType == CARD_SD){ ; } else if(cardType == CARD_SDHC){ ; } else { ; } // Size uint64_t cardSize = SD.cardSize() / (1024 * 1024); } // MicroSD Card void isSD() { zzzzzz = ""; // DFR|EEPROM Unique ID|Version|Date|Time|Temperature|Humidity|Lux| // Soil Moisture|Temperature|Humidity|MQ8|MQ9|MQ7|MQ3|PIR|*\r zzzzzz = "DFR|" + uid + "|" + sver + "|" + sDate + "|" + sTime + "|" + String(Temperature) + "C|" + String(Humidity) + "%|" + String(SData) + "|" + String(SDataSM) + "|" + String(latestTempC) + "C|" + String(latestHumidity) + "%|" + String(iMQ8ppm) + " PPM|" + String(iMQ9ppm) + " PPM|" + String(iMQ7ppm) + " PPM|" + String(iMQ3ppm) + "%|" + String(Det) + "|*\r"; // msg + 1 char msg[zzzzzz.length() + 1]; zzzzzz.toCharArray(msg, zzzzzz.length() + 1); // Append File appendFile(SD, "/dfrdata.txt", msg ); } // List Dir void listDir(fs::FS &fs, const char * dirname, uint8_t levels){ // List Dir dirname; File root = fs.open(dirname); if(!root){ return; } if(!root.isDirectory()){ return; } File file = root.openNextFile(); while(file){ if(file.isDirectory()){ file.name(); if(levels){ listDir(fs, file.name(), levels -1); } } else { file.name(); file.size(); } file = root.openNextFile(); } } // Write File void writeFile(fs::FS &fs, const char * path, const char * message){ // Write File path; File file = fs.open(path, FILE_WRITE); if(!file){ return; } if(file.print(message)){ ; } else { ; } file.close(); } // Append File void appendFile(fs::FS &fs, const char * path, const char * message){ // Append File path; File file = fs.open(path, FILE_APPEND); if(!file){ return; } if(file.print(message)){ ; } else { ; } file.close(); }
// MicroSD Card
// MicroSD Setup
void setupSD() {

    // MicroSD Card
    pinMode( chipSelect , OUTPUT );
    if(!SD.begin( chipSelect )){
        ;  
        return;
    }
    
    uint8_t cardType = SD.cardType();

    // CARD NONE
    if(cardType == CARD_NONE){
        ; 
        return;
    }

    // SD Card Type
    if(cardType == CARD_MMC){
        ; 
    } else if(cardType == CARD_SD){
        ; 
    } else if(cardType == CARD_SDHC){
        ; 
    } else {
        ; 
    } 

    // Size
    uint64_t cardSize = SD.cardSize() / (1024 * 1024);
 
}
// MicroSD Card
void isSD() {

  zzzzzz = "";

  // DFR|EEPROM Unique ID|Version|Date|Time|Temperature|Humidity|Lux|
  // Soil Moisture|Temperature|Humidity|MQ8|MQ9|MQ7|MQ3|PIR|*\r
  zzzzzz = "DFR|" + uid + "|" + sver + "|" + sDate + "|" + sTime + "|" 
  + String(Temperature) + "C|" + String(Humidity) + "%|" 
  + String(SData) + "|" + String(SDataSM) + "|" + String(latestTempC) + "C|" 
  + String(latestHumidity) + "%|" + String(iMQ8ppm) +   
  " PPM|" + String(iMQ9ppm) + " PPM|" + String(iMQ7ppm) + " PPM|" + 
  String(iMQ3ppm) + "%|" + String(Det) + "|*\r";

  // msg + 1
  char msg[zzzzzz.length() + 1];

  zzzzzz.toCharArray(msg, zzzzzz.length() + 1);

  // Append File
  appendFile(SD, "/dfrdata.txt", msg );
  
}
// List Dir
void listDir(fs::FS &fs, const char * dirname, uint8_t levels){
    
    // List Dir
    dirname;
    
    File root = fs.open(dirname);
    
    if(!root){
        return;
    }
    
    if(!root.isDirectory()){
        return;
    }

    File file = root.openNextFile();
    
    while(file){
        if(file.isDirectory()){
            file.name();
            if(levels){
                listDir(fs, file.name(), levels -1);
            }
        } else {
            file.name();
            file.size();
        }
        file = root.openNextFile();
    }
    
}
// Write File
void writeFile(fs::FS &fs, const char * path, const char * message){
    
    // Write File
    path;
    
    File file = fs.open(path, FILE_WRITE);
    
    if(!file){
        return;
    }
    
    if(file.print(message)){
        ;  
    } else {
        ;  
    }
    
    file.close();
    
}
// Append File
void appendFile(fs::FS &fs, const char * path, const char * message){
    
    // Append File
    path;
    
    File file = fs.open(path, FILE_APPEND);
    
    if(!file){
        return;
    }
    
    if(file.print(message)){
        ;  
    } else {
        ;  
    }
    
    file.close();
    
}

getSHT40.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Fermion: SHT40 Temperature & Humidity Sensor
// SHT40 Temperature & Humidity
void isSHT40(){
// Fermion: SHT40 Temperature & Humidity Sensor
// Temperature
Temperature = (175 * TemperatureData/65535) - 45;
// Humidity
Humidity = (125 * HumidityData/65535) - 6;
}
// Fermion: SHT40 Temperature & Humidity Sensor // SHT40 Temperature & Humidity void isSHT40(){ // Fermion: SHT40 Temperature & Humidity Sensor // Temperature Temperature = (175 * TemperatureData/65535) - 45; // Humidity Humidity = (125 * HumidityData/65535) - 6; }
// Fermion: SHT40 Temperature & Humidity Sensor
// SHT40 Temperature & Humidity
void isSHT40(){

  // Fermion: SHT40 Temperature & Humidity Sensor
  // Temperature
  Temperature = (175 * TemperatureData/65535) - 45;
  // Humidity
  Humidity = (125 * HumidityData/65535) - 6;

}

getSoilMoisture.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Gravity: Analog Soil Moisture Sensor
// Soil Moisture
void isSoilMoisture(){
// SDataSM => 0~900 Soil Moisture
SDataSM = map( SensorSM, 1, 3000, 0, 900);
}
// Gravity: Analog Soil Moisture Sensor // Soil Moisture void isSoilMoisture(){ // SDataSM => 0~900 Soil Moisture SDataSM = map( SensorSM, 1, 3000, 0, 900); }
// Gravity: Analog Soil Moisture Sensor
// Soil Moisture
void isSoilMoisture(){

  // SDataSM => 0~900 Soil Moisture
  SDataSM = map( SensorSM, 1, 3000, 0, 900);

}

setup.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Setup
void setup()
{
// Give display time to power on
delay(100);
// EEPROM Size
EEPROM.begin(EEPROM_SIZE);
// EEPROM Unique ID
isUID();
// Give display
delay(100);
// Set up I2C bus
Wire.begin();
// Give display
delay(100);
// Setup BLE Scan
isSetupBLEScan();
// Setup DS3231 RTC
isSetupRTC();
//MicroSD Card
setupSD();
// RHT Temperature and Humidity Sensor
// Setup RTH03 Temperature and Humidity Sensor
isSetupRTH03();
// PIR Motion
// Setup PIR
isSetupPIR();
// SHARP Display Start & Clear the Display
display.begin();
// Clear Display
display.clearDisplay();
// Initialize digital pin iLED as an output
pinMode(iLED, OUTPUT);
// Outputting high, the LED turns on
digitalWrite(iLED, HIGH);
// Initialize the LED Green
pinMode(iLEDGreen, OUTPUT);
// iLEDGreen HIGH
digitalWrite(iLEDGreen, HIGH );
// Initialize the Switch
pinMode(iSwitch, INPUT);
// Don Luc Electronics
// Version
// EEPROM
isDisplayUID();
// Delay 5 Second
delay( 5000 );
}
// Setup void setup() { // Give display time to power on delay(100); // EEPROM Size EEPROM.begin(EEPROM_SIZE); // EEPROM Unique ID isUID(); // Give display delay(100); // Set up I2C bus Wire.begin(); // Give display delay(100); // Setup BLE Scan isSetupBLEScan(); // Setup DS3231 RTC isSetupRTC(); //MicroSD Card setupSD(); // RHT Temperature and Humidity Sensor // Setup RTH03 Temperature and Humidity Sensor isSetupRTH03(); // PIR Motion // Setup PIR isSetupPIR(); // SHARP Display Start & Clear the Display display.begin(); // Clear Display display.clearDisplay(); // Initialize digital pin iLED as an output pinMode(iLED, OUTPUT); // Outputting high, the LED turns on digitalWrite(iLED, HIGH); // Initialize the LED Green pinMode(iLEDGreen, OUTPUT); // iLEDGreen HIGH digitalWrite(iLEDGreen, HIGH ); // Initialize the Switch pinMode(iSwitch, INPUT); // Don Luc Electronics // Version // EEPROM isDisplayUID(); // Delay 5 Second delay( 5000 ); }
// Setup
void setup()
{
  
  // Give display time to power on
  delay(100);

  // EEPROM Size
  EEPROM.begin(EEPROM_SIZE);
  
  // EEPROM Unique ID
  isUID();

  // Give display
  delay(100);

  // Set up I2C bus
  Wire.begin();

  // Give display
  delay(100);

  // Setup BLE Scan
  isSetupBLEScan();

  // Setup DS3231 RTC
  isSetupRTC();

  //MicroSD Card
  setupSD();

  // RHT Temperature and Humidity Sensor
  // Setup RTH03 Temperature and Humidity Sensor
  isSetupRTH03();

  // PIR Motion
  // Setup PIR
  isSetupPIR();

  // SHARP Display Start & Clear the Display
  display.begin();
  // Clear Display
  display.clearDisplay();

  // Initialize digital pin iLED as an output
  pinMode(iLED, OUTPUT);

  // Outputting high, the LED turns on
  digitalWrite(iLED, HIGH);

  // Initialize the LED Green
  pinMode(iLEDGreen, OUTPUT);

  // iLEDGreen HIGH
  digitalWrite(iLEDGreen, HIGH );

  // Initialize the Switch
  pinMode(iSwitch, INPUT);

  // Don Luc Electronics
  // Version
  // EEPROM
  isDisplayUID();
  
  // Delay 5 Second
  delay( 5000 );

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Teacher, Instructor, E-Mentor, R&D and Consulting

  • Programming Language
  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi, Arm, Silicon Labs, Espressif, Etc…)
  • IoT
  • Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
  • Robotics
  • Automation
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Machine Learning
  • Artificial Intelligence (AI)
  • RTOS
  • Sensors, eHealth Sensors, Biosensor, and Biometric
  • Research & Development (R & D)
  • Consulting

Follow Us

Luc Paquin – Curriculum Vitae – 2024
https://www.donluc.com/luc/

Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
LinkedIn: https://www.linkedin.com/in/jlucpaquin/

Don Luc

Project #28 – Sensors – PIR Motion Sensor – Mk13

——

#DonLucElectronics #DonLuc #Sensors #PIR #Adafruit #SparkFun #Pololu #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

PIR Motion Sensor

——

PIR Motion Sensor

——

PIR Motion Sensor

——

PIR Motion Sensor (JST)

This is a simple to use motion sensor. Power it up and wait 1-2 seconds for the sensor to get a snapshot of the still room. If anything moves after that period, the “Alarm” pin will go low. This unit works great from 5 to 12 Volt. The alarm pin is an open collector meaning you will need a pull up resistor on the alarm pin. The open drain setup allows multiple motion sensors to be connected on a single input pin. If any of the motion sensors go off, the input pin will be pulled low.

At their most fundamental level, PIR sensor’s are infrared-sensitive light detectors. By monitoring light in the infrared spectrum, PIR sensors can sense subtle changes in temperature across the area they’re viewing. When a human or some other object comes into the PIR’s field-of-view, the radiation pattern changes, and the PIR interprets that change as movement. All that’s left for us to connect is three pins: power, ground, and the output signal.

DL2401Mk02

1 x SparkFun Thing Plus – ESP32 WROOM
1 x DS3231 Precision RTC FeatherWing
1 x PIR Motion Sensor
1 x Pololu 5V Step-Up Voltage Regulator U1V10F5
1 x Rocker Switch – SPST
1 x Resistor 10K Ohm
1 x CR1220 3V Lithium Coin Cell Battery
1 x 1 x Lithium Ion Battery – 1000mAh
1 x Terminal Block Breakout FeatherWing
1 x SparkFun Cerberus USB Cable

SparkFun Thing Plus – ESP32 WROOM

LED – LED_BUILTIN
SDA – Digital 23
SCL – Digital 22
SW1 – Digital 21
PIR – Digital 14
VIN – +3.3V
VIN – +5V
GND – GND

——

DL2401Mk01p.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
/****** Don Luc Electronics © ******
Software Version Information
Project #28 - Sensors - PIR Motion Sensor - Mk13
28-13
DL2401Mk01p.ino
1 x SparkFun Thing Plus - ESP32 WROOM
1 x DS3231 Precision RTC FeatherWing
1 x PIR Motion Sensor
1 x Pololu 5V Step-Up Voltage Regulator U1V10F5
1 x Rocker Switch - SPST
1 x Resistor 10K Ohm
1 x Lithium Ion Battery - 1000mAh
1 x CR1220 3V Lithium Coin Cell Battery
1 x Terminal Block Breakout FeatherWing
1 x SparkFun Cerberus USB Cable
*/
// Include the Library Code
// Bluetooth LE keyboard
#include <BleKeyboard.h>
// Two Wire Interface (TWI/I2C)
#include <Wire.h>
// Serial Peripheral Interface
#include <SPI.h>
// DS3231 Precision RTC
#include <RTClib.h>
// Bluetooth LE Keyboard
BleKeyboard bleKeyboard;
String sKeyboard = "";
// Send Size
byte sendSize = 0;
// DS3231 Precision RTC
RTC_DS3231 rtc;
String dateRTC = "";
String timeRTC = "";
// PIR Motion
// Motion detector
const int iMotion = 14;
// Proximity
int proximity = LOW;
String Det = "";
// The number of the Rocker Switch pin
int iSwitch = 21;
// Variable for reading the button status
int SwitchState = 0;
// Software Version Information
String sver = "28-13";
void loop() {
// Date and Time RTC
isRTC ();
// isPIR Motion
isPIR();
// Read the state of the Switch value:
SwitchState = digitalRead(iSwitch);
// Check if the button is pressed. If it is, the SwitchState is HIGH:
if (SwitchState == HIGH) {
// Bluetooth LE Keyboard
isBluetooth();
}
// Delay 1 Second
delay(1000);
}
/****** Don Luc Electronics © ****** Software Version Information Project #28 - Sensors - PIR Motion Sensor - Mk13 28-13 DL2401Mk01p.ino 1 x SparkFun Thing Plus - ESP32 WROOM 1 x DS3231 Precision RTC FeatherWing 1 x PIR Motion Sensor 1 x Pololu 5V Step-Up Voltage Regulator U1V10F5 1 x Rocker Switch - SPST 1 x Resistor 10K Ohm 1 x Lithium Ion Battery - 1000mAh 1 x CR1220 3V Lithium Coin Cell Battery 1 x Terminal Block Breakout FeatherWing 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // Bluetooth LE keyboard #include <BleKeyboard.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Serial Peripheral Interface #include <SPI.h> // DS3231 Precision RTC #include <RTClib.h> // Bluetooth LE Keyboard BleKeyboard bleKeyboard; String sKeyboard = ""; // Send Size byte sendSize = 0; // DS3231 Precision RTC RTC_DS3231 rtc; String dateRTC = ""; String timeRTC = ""; // PIR Motion // Motion detector const int iMotion = 14; // Proximity int proximity = LOW; String Det = ""; // The number of the Rocker Switch pin int iSwitch = 21; // Variable for reading the button status int SwitchState = 0; // Software Version Information String sver = "28-13"; void loop() { // Date and Time RTC isRTC (); // isPIR Motion isPIR(); // Read the state of the Switch value: SwitchState = digitalRead(iSwitch); // Check if the button is pressed. If it is, the SwitchState is HIGH: if (SwitchState == HIGH) { // Bluetooth LE Keyboard isBluetooth(); } // Delay 1 Second delay(1000); }
/****** Don Luc Electronics © ******
Software Version Information
Project #28 - Sensors - PIR Motion Sensor - Mk13
28-13
DL2401Mk01p.ino
1 x SparkFun Thing Plus - ESP32 WROOM
1 x DS3231 Precision RTC FeatherWing
1 x PIR Motion Sensor
1 x Pololu 5V Step-Up Voltage Regulator U1V10F5
1 x Rocker Switch - SPST
1 x Resistor 10K Ohm
1 x Lithium Ion Battery - 1000mAh
1 x CR1220 3V Lithium Coin Cell Battery
1 x Terminal Block Breakout FeatherWing
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Bluetooth LE keyboard
#include <BleKeyboard.h>
// Two Wire Interface (TWI/I2C)
#include <Wire.h>
// Serial Peripheral Interface
#include <SPI.h>
// DS3231 Precision RTC 
#include <RTClib.h>

// Bluetooth LE Keyboard
BleKeyboard bleKeyboard;
String sKeyboard = "";
// Send Size
byte sendSize = 0;

// DS3231 Precision RTC 
RTC_DS3231 rtc;
String dateRTC = "";
String timeRTC = "";

// PIR Motion
// Motion detector
const int iMotion = 14;
// Proximity
int proximity = LOW;
String Det = "";

// The number of the Rocker Switch pin
int iSwitch = 21;
// Variable for reading the button status
int SwitchState = 0;

// Software Version Information
String sver = "28-13";

void loop() {

  // Date and Time RTC
  isRTC ();

  // isPIR Motion
  isPIR();

  // Read the state of the Switch value:
  SwitchState = digitalRead(iSwitch);

  // Check if the button is pressed. If it is, the SwitchState is HIGH:
  if (SwitchState == HIGH) {

    // Bluetooth LE Keyboard
    isBluetooth();

  }

  // Delay 1 Second
  delay(1000);

}

getBleKeyboard.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Ble Keyboard
// Bluetooth
// isBluetooth
void isBluetooth() {
// ESP32 BLE Keyboard
if(bleKeyboard.isConnected()) {
// Send Size Length
sendSize = sKeyboard.length();
// Send Size, charAt
for(byte i = 0; i < sendSize+1; i++){
// Write
bleKeyboard.write(sKeyboard.charAt(i));
delay(50);
}
bleKeyboard.write(KEY_RETURN);
}
}
// Ble Keyboard // Bluetooth // isBluetooth void isBluetooth() { // ESP32 BLE Keyboard if(bleKeyboard.isConnected()) { // Send Size Length sendSize = sKeyboard.length(); // Send Size, charAt for(byte i = 0; i < sendSize+1; i++){ // Write bleKeyboard.write(sKeyboard.charAt(i)); delay(50); } bleKeyboard.write(KEY_RETURN); } }
// Ble Keyboard
// Bluetooth
// isBluetooth
void isBluetooth() {

  // ESP32 BLE Keyboard
  if(bleKeyboard.isConnected()) {

    // Send Size Length
    sendSize = sKeyboard.length();

    // Send Size, charAt
    for(byte i = 0; i < sendSize+1; i++){

       // Write
       bleKeyboard.write(sKeyboard.charAt(i));
       delay(50);
    
    }
    bleKeyboard.write(KEY_RETURN);

  }

}

getPIR.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// PIR Motion
// Setup PIR
void setupPIR() {
// Setup PIR Montion
pinMode(iMotion, INPUT_PULLUP);
}
// isPIR Motion
void isPIR() {
// Proximity
proximity = digitalRead(iMotion);
if (proximity == LOW)
{
// PIR Motion Sensor's LOW, Motion is detected
Det = "Motion Yes";
}
else
{
// PIR Motion Sensor's HIGH
Det = "No";
}
sKeyboard = sKeyboard + String(Det) + "|*";
}
// PIR Motion // Setup PIR void setupPIR() { // Setup PIR Montion pinMode(iMotion, INPUT_PULLUP); } // isPIR Motion void isPIR() { // Proximity proximity = digitalRead(iMotion); if (proximity == LOW) { // PIR Motion Sensor's LOW, Motion is detected Det = "Motion Yes"; } else { // PIR Motion Sensor's HIGH Det = "No"; } sKeyboard = sKeyboard + String(Det) + "|*"; }
// PIR Motion
// Setup PIR
void setupPIR() {

  // Setup PIR Montion
  pinMode(iMotion, INPUT_PULLUP);
  
}
// isPIR Motion
void isPIR() {

  // Proximity
  proximity = digitalRead(iMotion);
  if (proximity == LOW) 
  {

    // PIR Motion Sensor's LOW, Motion is detected
    Det = "Motion Yes";

  }
  else
  {

    // PIR Motion Sensor's HIGH
    Det = "No";
    
  }

  sKeyboard = sKeyboard + String(Det) + "|*";
  
}

getRTC.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Date & Time
// DS3231 Precision RTC
void isSetupRTC() {
// DS3231 Precision RTC
if (! rtc.begin()) {
//Serial.println("Couldn't find RTC");
//Serial.flush();
while (1) delay(10);
}
if (rtc.lostPower()) {
//Serial.println("RTC lost power, let's set the time!");
// When time needs to be set on a new device, or after a power loss, the
// following line sets the RTC to the date & time this sketch was compiled
rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
// This line sets the RTC with an explicit date & time, for example to set
// January 21, 2014 at 3am you would call:
//rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0));
}
}
// Date and Time RTC
void isRTC () {
// Date and Time
dateRTC = "";
timeRTC = "";
DateTime now = rtc.now();
// Date
dateRTC = now.year(), DEC;
dateRTC = dateRTC + "/";
dateRTC = dateRTC + now.month(), DEC;
dateRTC = dateRTC + "/";
dateRTC = dateRTC + now.day(), DEC;
// Time
timeRTC = now.hour(), DEC;
timeRTC = timeRTC + ":";
timeRTC = timeRTC + now.minute(), DEC;
timeRTC = timeRTC + ":";
timeRTC = timeRTC + now.second(), DEC;
// bleKeyboard
sKeyboard = "SEN|" + sver + "|" + String(dateRTC)
+ "|" + String(timeRTC) + "|";
}
// Date & Time // DS3231 Precision RTC void isSetupRTC() { // DS3231 Precision RTC if (! rtc.begin()) { //Serial.println("Couldn't find RTC"); //Serial.flush(); while (1) delay(10); } if (rtc.lostPower()) { //Serial.println("RTC lost power, let's set the time!"); // When time needs to be set on a new device, or after a power loss, the // following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: //rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0)); } } // Date and Time RTC void isRTC () { // Date and Time dateRTC = ""; timeRTC = ""; DateTime now = rtc.now(); // Date dateRTC = now.year(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.month(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.day(), DEC; // Time timeRTC = now.hour(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.minute(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.second(), DEC; // bleKeyboard sKeyboard = "SEN|" + sver + "|" + String(dateRTC) + "|" + String(timeRTC) + "|"; }
// Date & Time
// DS3231 Precision RTC
void isSetupRTC() {

  // DS3231 Precision RTC
  if (! rtc.begin()) {
    //Serial.println("Couldn't find RTC");
    //Serial.flush();
    while (1) delay(10);
  }

  if (rtc.lostPower()) {
    //Serial.println("RTC lost power, let's set the time!");
    // When time needs to be set on a new device, or after a power loss, the
    // following line sets the RTC to the date & time this sketch was compiled
    rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
    // This line sets the RTC with an explicit date & time, for example to set
    // January 21, 2014 at 3am you would call:
    //rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0));
  }
  
}
// Date and Time RTC
void isRTC () {

  // Date and Time
  dateRTC = "";
  timeRTC = "";
  DateTime now = rtc.now();
  
  // Date
  dateRTC = now.year(), DEC; 
  dateRTC = dateRTC + "/";
  dateRTC = dateRTC + now.month(), DEC;
  dateRTC = dateRTC + "/";
  dateRTC = dateRTC + now.day(), DEC;

  // Time
  timeRTC = now.hour(), DEC;
  timeRTC = timeRTC + ":";
  timeRTC = timeRTC + now.minute(), DEC;
  timeRTC = timeRTC + ":";
  timeRTC = timeRTC + now.second(), DEC;

  // bleKeyboard
  sKeyboard = "SEN|" + sver + "|" + String(dateRTC) 
  + "|" + String(timeRTC) + "|";

}

setup.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Setup
void setup()
{
// Give display time to power on
delay(100);
// Bluetooth LE keyboard
bleKeyboard.begin();
// Wire - Inialize I2C Hardware
Wire.begin();
// Give display time to power on
delay(100);
// Date & Time RTC
// DS3231 Precision RTC
isSetupRTC();
// Give display time to power on
delay(100);
// PIR Motion
// Setup PIR
setupPIR();
// Initialize the Switch pin as an input
pinMode(iSwitch, INPUT);
// Initialize digital pin LED_BUILTIN as an output
pinMode(LED_BUILTIN, OUTPUT);
// Turn the LED on HIGH
digitalWrite(LED_BUILTIN, HIGH);
// Delay 5 Second
delay( 5000 );
}
// Setup void setup() { // Give display time to power on delay(100); // Bluetooth LE keyboard bleKeyboard.begin(); // Wire - Inialize I2C Hardware Wire.begin(); // Give display time to power on delay(100); // Date & Time RTC // DS3231 Precision RTC isSetupRTC(); // Give display time to power on delay(100); // PIR Motion // Setup PIR setupPIR(); // Initialize the Switch pin as an input pinMode(iSwitch, INPUT); // Initialize digital pin LED_BUILTIN as an output pinMode(LED_BUILTIN, OUTPUT); // Turn the LED on HIGH digitalWrite(LED_BUILTIN, HIGH); // Delay 5 Second delay( 5000 ); }
// Setup
void setup()
{
  
  // Give display time to power on
  delay(100);

  // Bluetooth LE keyboard
  bleKeyboard.begin();
  
  // Wire - Inialize I2C Hardware
  Wire.begin();

  // Give display time to power on
  delay(100);

  // Date & Time RTC
  // DS3231 Precision RTC 
  isSetupRTC();

  // Give display time to power on
  delay(100);
  
  // PIR Motion
  // Setup PIR
  setupPIR();
  
  // Initialize the Switch pin as an input
  pinMode(iSwitch, INPUT);

  // Initialize digital pin LED_BUILTIN as an output
  pinMode(LED_BUILTIN, OUTPUT);
  // Turn the LED on HIGH
  digitalWrite(LED_BUILTIN, HIGH);

  // Delay 5 Second
  delay( 5000 );

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Teacher, Instructor, E-Mentor, R&D and Consulting

  • Programming Language
  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi, Arm, Silicon Labs, Espressif, Etc…)
  • IoT
  • Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
  • Robotics
  • Automation
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Machine Learning
  • Artificial Intelligence (AI)
  • RTOS
  • eHealth Sensors, Biosensor, and Biometric
  • Research & Development (R & D)
  • Consulting

Follow Us

Luc Paquin – Curriculum Vitae – 2024
https://www.donluc.com/luc/

Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #28 – Sensors – Pololu MinIMU-9 v5 – Mk04

——

#DonLucElectronics #DonLuc #Sensors #MinIMU9 #Pololu #Adafruit #SparkFun #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

Pololu MinIMU-9 v5

——

Pololu MinIMU-9 v5

——

Pololu MinIMU-9 v5

——

Pololu MinIMU-9 v5 Gyro, Accelerometer, and Compass (LSM6DS33 and LIS3MDL Carrier)

The Pololu MinIMU-9 v5 is an inertial measurement unit (IMU) that packs an LSM6DS33 3-axis gyro and 3-axis accelerometer and an LIS3MDL 3-axis magnetometer onto a tiny 0.8″ × 0.5″ board. An I²C interface accesses nine independent rotation, acceleration, and magnetic measurements that can be used to calculate the sensor’s absolute orientation. The MinIMU-9 v5 board includes a voltage regulator and a level-shifting circuit that allow operation from 2.5 to 5.5 Volt.

DL2308Mk05

1 x Adafruit METRO M0 Express
1 x DS3231 Precision RTC FeatherWing
1 x Pololu MinIMU-9 v5 Gyro, Accelerometer, and Compass
1 x ProtoScrewShield
1 x Rocker Switch – SPST
1 x Resistor 10K Ohm
1 x CR1220 3V Lithium Coin Cell Battery
1 x SparkFun Cerberus USB Cable

Adafruit METRO M0 Express

LED – LED_BUILTIN
SDA – Digital 20
SCL – Digital 21
SW1 – Digital 2
VIN – +3.3V
GND – GND

——

DL2308Mk05p.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
/****** Don Luc Electronics © ******
Software Version Information
Project #28 - Sensors - Pololu MinIMU-9 v5 - Mk04
28-04
DL2308Mk05p.ino
1 x Adafruit METRO M0 Express
1 x DS3231 Precision RTC FeatherWing
1 x Pololu MinIMU-9 v5 Gyro, Accelerometer, and Compass
1 x ProtoScrewShield
1 x Rocker Switch - SPST
1 x Resistor 10K Ohm
1 x CR1220 3V Lithium Coin Cell Battery
1 x SparkFun Cerberus USB Cable
*/
// Include the Library Code
// DS3231 Precision RTC
#include <RTClib.h>
// Two Wire Interface (TWI/I2C)
#include <Wire.h>
// Keyboard
#include <Keyboard.h>
// Includes and variables for IMU integration
// STMicroelectronics LSM6DS33 Gyroscope and Accelerometer
#include <LSM6.h>
// STMicroelectronics LIS3MDL Magnetometer
#include <LIS3MDL.h>
// Keyboard
String sKeyboard = "";
// DS3231 Precision RTC
RTC_DS3231 rtc;
String dateRTC = "";
String timeRTC = "";
// Pololu 9DoF IMU
// STMicroelectronics LSM6DS33 Gyroscope and Accelerometer
LSM6 imu;
// Accelerometer and Gyroscopes
// Accelerometer
int imuAX;
int imuAY;
int imuAZ;
// Gyroscopes
int imuGX;
int imuGY;
int imuGZ;
// STMicroelectronics LIS3MDL Magnetometer
LIS3MDL mag;
// Magnetometer
int magX;
int magY;
int magZ;
// The number of the pushbutton pin
int iButton = 2;
// Variable for reading the button status
int buttonState = 0;
// Software Version Information
String sver = "28-04";
void loop() {
// Date and Time RTC
isRTC ();
// Pololu Accelerometer and Gyroscopes
isIMU();
// Pololu Magnetometer
isMag();
// Read the state of the button value:
buttonState = digitalRead(iButton);
// Check if the button is pressed. If it is, the buttonState is HIGH:
if (buttonState == HIGH) {
Keyboard.println(sKeyboard);
}
// Delay 1 Second
delay(1000);
}
/****** Don Luc Electronics © ****** Software Version Information Project #28 - Sensors - Pololu MinIMU-9 v5 - Mk04 28-04 DL2308Mk05p.ino 1 x Adafruit METRO M0 Express 1 x DS3231 Precision RTC FeatherWing 1 x Pololu MinIMU-9 v5 Gyro, Accelerometer, and Compass 1 x ProtoScrewShield 1 x Rocker Switch - SPST 1 x Resistor 10K Ohm 1 x CR1220 3V Lithium Coin Cell Battery 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // DS3231 Precision RTC #include <RTClib.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Keyboard #include <Keyboard.h> // Includes and variables for IMU integration // STMicroelectronics LSM6DS33 Gyroscope and Accelerometer #include <LSM6.h> // STMicroelectronics LIS3MDL Magnetometer #include <LIS3MDL.h> // Keyboard String sKeyboard = ""; // DS3231 Precision RTC RTC_DS3231 rtc; String dateRTC = ""; String timeRTC = ""; // Pololu 9DoF IMU // STMicroelectronics LSM6DS33 Gyroscope and Accelerometer LSM6 imu; // Accelerometer and Gyroscopes // Accelerometer int imuAX; int imuAY; int imuAZ; // Gyroscopes int imuGX; int imuGY; int imuGZ; // STMicroelectronics LIS3MDL Magnetometer LIS3MDL mag; // Magnetometer int magX; int magY; int magZ; // The number of the pushbutton pin int iButton = 2; // Variable for reading the button status int buttonState = 0; // Software Version Information String sver = "28-04"; void loop() { // Date and Time RTC isRTC (); // Pololu Accelerometer and Gyroscopes isIMU(); // Pololu Magnetometer isMag(); // Read the state of the button value: buttonState = digitalRead(iButton); // Check if the button is pressed. If it is, the buttonState is HIGH: if (buttonState == HIGH) { Keyboard.println(sKeyboard); } // Delay 1 Second delay(1000); }
/****** Don Luc Electronics © ******
Software Version Information
Project #28 - Sensors - Pololu MinIMU-9 v5 - Mk04
28-04
DL2308Mk05p.ino
1 x Adafruit METRO M0 Express
1 x DS3231 Precision RTC FeatherWing
1 x Pololu MinIMU-9 v5 Gyro, Accelerometer, and Compass
1 x ProtoScrewShield
1 x Rocker Switch - SPST
1 x Resistor 10K Ohm
1 x CR1220 3V Lithium Coin Cell Battery
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// DS3231 Precision RTC 
#include <RTClib.h>
// Two Wire Interface (TWI/I2C)
#include <Wire.h>
// Keyboard
#include <Keyboard.h>
// Includes and variables for IMU integration
// STMicroelectronics LSM6DS33 Gyroscope and Accelerometer
#include <LSM6.h>
// STMicroelectronics LIS3MDL Magnetometer
#include <LIS3MDL.h>

// Keyboard
String sKeyboard = "";

// DS3231 Precision RTC 
RTC_DS3231 rtc;
String dateRTC = "";
String timeRTC = "";

// Pololu 9DoF IMU
// STMicroelectronics LSM6DS33 Gyroscope and Accelerometer
LSM6 imu;
// Accelerometer and Gyroscopes
// Accelerometer
int imuAX;
int imuAY;
int imuAZ;
// Gyroscopes 
int imuGX;
int imuGY;
int imuGZ;
// STMicroelectronics LIS3MDL Magnetometer
LIS3MDL mag;
// Magnetometer
int magX;
int magY;
int magZ;

// The number of the pushbutton pin
int iButton = 2;
// Variable for reading the button status
int buttonState = 0;

// Software Version Information
String sver = "28-04";

void loop() {

  // Date and Time RTC
  isRTC ();

  // Pololu Accelerometer and Gyroscopes
  isIMU();

  // Pololu Magnetometer
  isMag();

  // Read the state of the button value:
  buttonState = digitalRead(iButton);

  // Check if the button is pressed. If it is, the buttonState is HIGH:
  if (buttonState == HIGH) {

     Keyboard.println(sKeyboard);
    
  }

  // Delay 1 Second
  delay(1000);

}

getAccelGyro.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Accelerometer and Gyroscopes
// Setup IMU
void setupIMU() {
// Setup IMU
imu.init();
// Default
imu.enableDefault();
}
// Accelerometer and Gyroscopes
void isIMU() {
// Accelerometer and Gyroscopes
imu.read();
// Accelerometer x, y, z
imuAX = imu.a.x;
imuAY = imu.a.y;
imuAZ = imu.a.z;
// Gyroscopes x, y, z
imuGX = imu.g.x;
imuGY = imu.g.y;
imuGZ = imu.g.z;
sKeyboard = sKeyboard + String(imuAX) + "|" + String(imuAY) + "|" + String(imuAZ) + "|";
sKeyboard = sKeyboard + String(imuGX) + "|" + String(imuGY) + "|" + String(imuGZ) + "|";
}
// Accelerometer and Gyroscopes // Setup IMU void setupIMU() { // Setup IMU imu.init(); // Default imu.enableDefault(); } // Accelerometer and Gyroscopes void isIMU() { // Accelerometer and Gyroscopes imu.read(); // Accelerometer x, y, z imuAX = imu.a.x; imuAY = imu.a.y; imuAZ = imu.a.z; // Gyroscopes x, y, z imuGX = imu.g.x; imuGY = imu.g.y; imuGZ = imu.g.z; sKeyboard = sKeyboard + String(imuAX) + "|" + String(imuAY) + "|" + String(imuAZ) + "|"; sKeyboard = sKeyboard + String(imuGX) + "|" + String(imuGY) + "|" + String(imuGZ) + "|"; }
// Accelerometer and Gyroscopes
// Setup IMU
void setupIMU() {

  // Setup IMU
  imu.init();
  // Default
  imu.enableDefault();
  
}
// Accelerometer and Gyroscopes
void isIMU() {

  // Accelerometer and Gyroscopes
  imu.read();
  // Accelerometer x, y, z
  imuAX = imu.a.x;
  imuAY = imu.a.y;
  imuAZ = imu.a.z;
  // Gyroscopes x, y, z
  imuGX = imu.g.x;
  imuGY = imu.g.y;
  imuGZ = imu.g.z;

  sKeyboard = sKeyboard + String(imuAX) + "|" + String(imuAY) + "|" + String(imuAZ) + "|";
  sKeyboard = sKeyboard + String(imuGX) + "|" + String(imuGY) + "|" + String(imuGZ) + "|";
  
}

getIMUMagnetometer.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// IMU Magnetometer
// Setup Magnetometer
void setupMag() {
// Setup Magnetometer
mag.init();
// Default
mag.enableDefault();
}
// Magnetometer
void isMag() {
// Magnetometer
mag.read();
// Magnetometer x, y, z
magX = mag.m.x;
magY = mag.m.y;
magZ = mag.m.z;
sKeyboard = sKeyboard + String(magX) + "|" + String(magY) + "|" + String(magZ) + "|*";
}
// IMU Magnetometer // Setup Magnetometer void setupMag() { // Setup Magnetometer mag.init(); // Default mag.enableDefault(); } // Magnetometer void isMag() { // Magnetometer mag.read(); // Magnetometer x, y, z magX = mag.m.x; magY = mag.m.y; magZ = mag.m.z; sKeyboard = sKeyboard + String(magX) + "|" + String(magY) + "|" + String(magZ) + "|*"; }
// IMU Magnetometer
// Setup Magnetometer
void setupMag() {

  // Setup Magnetometer
  mag.init();
  // Default
  mag.enableDefault();
  
}
// Magnetometer
void isMag() {

  // Magnetometer
  mag.read();
  // Magnetometer x, y, z
  magX = mag.m.x;
  magY = mag.m.y;
  magZ = mag.m.z;

  sKeyboard = sKeyboard + String(magX) + "|" + String(magY) + "|" + String(magZ) + "|*";
  
}

getRTC.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Date & Time
// DS3231 Precision RTC
void setupRTC() {
// DS3231 Precision RTC
if (! rtc.begin()) {
//Serial.println("Couldn't find RTC");
//Serial.flush();
while (1) delay(10);
}
if (rtc.lostPower()) {
//Serial.println("RTC lost power, let's set the time!");
// When time needs to be set on a new device, or after a power loss, the
// following line sets the RTC to the date & time this sketch was compiled
rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
// This line sets the RTC with an explicit date & time, for example to set
// January 21, 2014 at 3am you would call:
//rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0));
}
}
// Date and Time RTC
void isRTC () {
// Date and Time
dateRTC = "";
timeRTC = "";
DateTime now = rtc.now();
// Date
dateRTC = now.year(), DEC;
dateRTC = dateRTC + "/";
dateRTC = dateRTC + now.month(), DEC;
dateRTC = dateRTC + "/";
dateRTC = dateRTC + now.day(), DEC;
// Time
timeRTC = now.hour(), DEC;
timeRTC = timeRTC + ":";
timeRTC = timeRTC + now.minute(), DEC;
timeRTC = timeRTC + ":";
timeRTC = timeRTC + now.second(), DEC;
sKeyboard = "SEN|" + sver + "|" + String(dateRTC) + "|" +
String(timeRTC) + "|";
}
// Date & Time // DS3231 Precision RTC void setupRTC() { // DS3231 Precision RTC if (! rtc.begin()) { //Serial.println("Couldn't find RTC"); //Serial.flush(); while (1) delay(10); } if (rtc.lostPower()) { //Serial.println("RTC lost power, let's set the time!"); // When time needs to be set on a new device, or after a power loss, the // following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: //rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0)); } } // Date and Time RTC void isRTC () { // Date and Time dateRTC = ""; timeRTC = ""; DateTime now = rtc.now(); // Date dateRTC = now.year(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.month(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.day(), DEC; // Time timeRTC = now.hour(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.minute(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.second(), DEC; sKeyboard = "SEN|" + sver + "|" + String(dateRTC) + "|" + String(timeRTC) + "|"; }
// Date & Time
// DS3231 Precision RTC
void setupRTC() {

  // DS3231 Precision RTC
  if (! rtc.begin()) {
    //Serial.println("Couldn't find RTC");
    //Serial.flush();
    while (1) delay(10);
  }

  if (rtc.lostPower()) {
    //Serial.println("RTC lost power, let's set the time!");
    // When time needs to be set on a new device, or after a power loss, the
    // following line sets the RTC to the date & time this sketch was compiled
    rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
    // This line sets the RTC with an explicit date & time, for example to set
    // January 21, 2014 at 3am you would call:
    //rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0));
  }
  
}
// Date and Time RTC
void isRTC () {

  // Date and Time
  dateRTC = "";
  timeRTC = "";
  DateTime now = rtc.now();
  
  // Date
  dateRTC = now.year(), DEC; 
  dateRTC = dateRTC + "/";
  dateRTC = dateRTC + now.month(), DEC;
  dateRTC = dateRTC + "/";
  dateRTC = dateRTC + now.day(), DEC;

  // Time
  timeRTC = now.hour(), DEC;
  timeRTC = timeRTC + ":";
  timeRTC = timeRTC + now.minute(), DEC;
  timeRTC = timeRTC + ":";
  timeRTC = timeRTC + now.second(), DEC;

  sKeyboard = "SEN|" + sver + "|" + String(dateRTC) + "|" + 
  String(timeRTC) + "|";
  
}

setup.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Setup
void setup()
{
// Give display time to power on
delay(100);
// Wire - Inialize I2C Hardware
Wire.begin();
// Give display time to power on
delay(100);
// Date & Time RTC
// DS3231 Precision RTC
setupRTC();
// Initialize control over the keyboard:
Keyboard.begin();
// Pololu Setup IMU
setupIMU();
// Pololu Setup Magnetometer
setupMag();
// Initialize the button pin as an input
pinMode(iButton, INPUT);
// Initialize digital pin LED_BUILTIN as an output
pinMode(LED_BUILTIN, OUTPUT);
// Turn the LED on HIGH
digitalWrite(LED_BUILTIN, HIGH);
// Delay 5 Second
delay( 5000 );
}
// Setup void setup() { // Give display time to power on delay(100); // Wire - Inialize I2C Hardware Wire.begin(); // Give display time to power on delay(100); // Date & Time RTC // DS3231 Precision RTC setupRTC(); // Initialize control over the keyboard: Keyboard.begin(); // Pololu Setup IMU setupIMU(); // Pololu Setup Magnetometer setupMag(); // Initialize the button pin as an input pinMode(iButton, INPUT); // Initialize digital pin LED_BUILTIN as an output pinMode(LED_BUILTIN, OUTPUT); // Turn the LED on HIGH digitalWrite(LED_BUILTIN, HIGH); // Delay 5 Second delay( 5000 ); }
// Setup
void setup()
{
  
  // Give display time to power on
  delay(100);
  
  // Wire - Inialize I2C Hardware
  Wire.begin();

  // Give display time to power on
  delay(100);

  // Date & Time RTC
  // DS3231 Precision RTC 
  setupRTC();
  
  // Initialize control over the keyboard:
  Keyboard.begin();

  // Pololu Setup IMU
  setupIMU();

  // Pololu Setup Magnetometer
  setupMag();

  // Initialize the button pin as an input
  pinMode(iButton, INPUT);

  // Initialize digital pin LED_BUILTIN as an output
  pinMode(LED_BUILTIN, OUTPUT);
  // Turn the LED on HIGH
  digitalWrite(LED_BUILTIN, HIGH);

  // Delay 5 Second
  delay( 5000 );

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Programming Language
  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Machine Learning
  • RTOS
  • Research & Development (R & D)

Instructor, E-Mentor, STEAM, and Arts-Based Training

  • Programming Language
  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/

Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #15: Environment – HC-SR04 Ultrasonic Sensor – Mk18

——

#DonLucElectronics #DonLuc #Environment #MQ #PIR #HCSR04 #RHT03 #RTC #ArduinoUNO #Arduino #AdafruitPowerBoost #Project #Programming #Electronics #Microcontrollers #Consultant

——

HC-SR04

——

HC-SR04

——

HC-SR04

——

HC-SR04

——

HC-SR04 Ultrasonic Sensor

This is the HC-SR04 ultrasonic distance sensor. This economical sensor provides 2cm to 400cm of non-contact measurement functionality with a ranging accuracy that can reach up to 3mm. Each HC-SR04 module includes an ultrasonic transmitter, a receiver and a control circuit.

There are only four pins that you need to worry about on the HC-SR04: VCC (Power), Trig (Trigger), Echo (Receive), and GND (Ground). You will find this sensor very easy to set up and use for your next range-finding project. This sensor has additional control circuitry that can prevent inconsistent “bouncy” data depending on the application.

DL2110Mk05

1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x RGB LCD Shield 16×2 Character Negative Display
1 x HC-SR04 Ultrasonic Sensor
1 x ChronoDot – Ultra-Precise Real Time Clock – v2.1
1 x CR1632 Batteries
1 x MicroSD Card Breakout Board+
1 x MicroSD 2.0 GB
1 x Rocker Switch – SPST (Round)
1 x 10K Ohm
1 x LED Green
1 x 220 Ohm
1 x Adafruit PowerBoost 500 Shield
1 x Lithium Ion Battery – 3.7v 2000mAh
4 x Pololu Carrier for MQ Gas Sensors
1 x SparkFun Hydrogen Gas Sensor – MQ-8
1 x 4.7K Ohm
1 x Pololu Carbon Monoxide & Flammable Gas Sensor – MQ-9
1 x 22k Ohm
1 x SparkFun Carbon Monoxide Gas Sensor – MQ-7
1 x 10K Ohm
1 x SparkFun Alcohol Gas Sensor – MQ-3
1 x 220k Ohm
1 x Temperature and Humidity Sensor- RHT03
1 x PIR Motion Sensor (JST)
1 x SparkFun Solderable Half-Breadboard
1 x Half-Breadboard
1 x SparkFun Cerberus USB Cable

Arduino UNO – R3

CLK – Digital 13
DO – Digital 12
DI – Digital 11
CS – Digital 10
ECH – Digital 9
TIR – Digital 8
PIR – Digital 7
RHT – Digital 5
RS0 – Digital 3
LEG – Digital 2
MQ8 – Analog 0
MQ9 – Analog 1
MQ7 – Analog 2
MQ3 – Analog 3
SDA – Analog 4
SCL – Analog 5
VIN – +5V
GND – GND

DL2110Mk05p.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
/*
***** Don Luc Electronics © *****
Software Version Information
Project #15: Environment – HC-SR04 Ultrasonic Sensor – Mk18
10-05
DL2110Mk05p.ino
1 x Arduino UNO - R3
1 x ProtoScrewShield
1 x RGB LCD Shield 16x2 Character Negative Display
1 x HC-SR04 Ultrasonic Sensor
1 x ChronoDot - Ultra-Precise Real Time Clock - v2.1
1 x CR1632 Batteries
1 x MicroSD Card Breakout Board+
1 x MicroSD 2.0 GB
1 x Rocker Switch - SPST (Round)
1 x 10K Ohm
1 x LED Green
1 x 220 Ohm
1 x Adafruit PowerBoost 500 Shield
1 x Lithium Ion Battery - 3.7v 2000mAh
4 x Pololu Carrier for MQ Gas Sensors
1 x SparkFun Hydrogen Gas Sensor - MQ-8
1 x 4.7K Ohm
1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9
1 x 22k Ohm
1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7
1 x 10K Ohm
1 x SparkFun Alcohol Gas Sensor - MQ-3
1 x 220k Ohm
1 x Temperature and Humidity Sensor - RHT03
1 x PIR Motion Sensor (JST)
1 x SparkFun Solderable Half-Breadboard
1 x Half-Breadboard
1 x SparkFun Cerberus USB Cable
*/
// Include the Library Code
// EEPROM Library to Read and Write EEPROM with Unique ID for Unit
#include <EEPROM.h>
// RHT Temperature and Humidity Sensor
#include <SparkFun_RHT03.h>
// Adafruit RGB LCD Shield 16x2
#include <Adafruit_RGBLCDShield.h>
// Wire
#include <Wire.h>
// DS3231 RTC Date and Time
#include <RTClib.h>
// SD Card
#include <SPI.h>
#include <SD.h>
// RHT Temperature and Humidity Sensor
// RHT03 data pin Digital 5
const int RHT03_DATA_PIN = 5;
// This creates a RTH03 object, which we'll use to interact with the sensor
RHT03 rht;
float latestHumidity;
float latestTempC;
// Gas Sensors MQ
// Hydrogen Gas Sensor - MQ-8
int iMQ8 = A0;
int iMQ8Raw = 0;
int iMQ8ppm = 0;
// Two points are taken from the curve in datasheet.
// With these two points, a line is formed which is
// "approximately equivalent" to the original curve.
float H2Curve[3] = {2.3, 0.93,-1.44};
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int iMQ9 = A1;
int iMQ9Raw = 0;
int iMQ9ppm = 0;
// Carbon Monoxide Gas Sensor - MQ-7
int iMQ7 = A2;
int iMQ7Raw = 0;
int iMQ7ppm = 0;
// Alcohol Gas Sensor - MQ-3
int iMQ3 = A3;
int iMQ3Raw = 0;
int iMQ3ppm = 0;
// PIR Motion
// Motion detector
const int iMotion = 7;
// Proximity
int proximity = LOW;
String Det = "";
// Adafruit RGB LCD Shield
Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield();
// These #defines make it easy to set the backlight color
#define OFF 0x0
#define RED 0x1
#define YELLOW 0x3
#define GREEN 0x2
#define TEAL 0x6
#define BLUE 0x4
#define VIOLET 0x5
#define WHITE 0x7
// Momentary Button
int yy = 0;
uint8_t momentaryButton = 0;
// DS3231 RTC Date and Time
RTC_DS3231 rtc;
String sDate;
String sTime;
// SD Card
const int chipSelect = 10;
String zzzzzz = "";
// LED Green
int iLEDGreen = 2;
// Rocker Switch - SPST (Round)
int iSS1 = 3;
// State
int iSS1State = 0;
// HC-SR04 Ultrasonic Sensor
int iTrig = 8;
int iEcho = 9;
// Stores the distance measured by the distance sensor
float distance = 0;
// Software Version Information
String uid = "";
// Version
String sver = "15-18";
void loop()
{
// Adafruit RGB LCD Shield
// Clear
RGBLCDShield.clear();
// iLEDGreen LOW
digitalWrite(iLEDGreen, LOW );
// RHT Temperature and Humidity Sensor
isRHT03();
// Gas Sensors MQ
isGasSensor();
// isPIR Motion
isPIR();
// DS3231 RTC Date and Time
isRTC();
// HC-SR04 Ultrasonic Sensor
isHCSR04();
// Adafruit RGB LCD Shield
// Display
isDisplay();
// Slide Switch
// Read the state of the iSS1 value
iSS1State = digitalRead(iSS1);
// If it is the Slide Switch State is HIGH
if (iSS1State == HIGH) {
// iLEDGreen HIGH
digitalWrite(iLEDGreen, HIGH );
// MicroSD Card
isSD();
} else {
// iLEDGreen LOW
digitalWrite(iLEDGreen, LOW );
}
// Delay
delay( 500 );
}
/* ***** Don Luc Electronics © ***** Software Version Information Project #15: Environment – HC-SR04 Ultrasonic Sensor – Mk18 10-05 DL2110Mk05p.ino 1 x Arduino UNO - R3 1 x ProtoScrewShield 1 x RGB LCD Shield 16x2 Character Negative Display 1 x HC-SR04 Ultrasonic Sensor 1 x ChronoDot - Ultra-Precise Real Time Clock - v2.1 1 x CR1632 Batteries 1 x MicroSD Card Breakout Board+ 1 x MicroSD 2.0 GB 1 x Rocker Switch - SPST (Round) 1 x 10K Ohm 1 x LED Green 1 x 220 Ohm 1 x Adafruit PowerBoost 500 Shield 1 x Lithium Ion Battery - 3.7v 2000mAh 4 x Pololu Carrier for MQ Gas Sensors 1 x SparkFun Hydrogen Gas Sensor - MQ-8 1 x 4.7K Ohm 1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9 1 x 22k Ohm 1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7 1 x 10K Ohm 1 x SparkFun Alcohol Gas Sensor - MQ-3 1 x 220k Ohm 1 x Temperature and Humidity Sensor - RHT03 1 x PIR Motion Sensor (JST) 1 x SparkFun Solderable Half-Breadboard 1 x Half-Breadboard 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // EEPROM Library to Read and Write EEPROM with Unique ID for Unit #include <EEPROM.h> // RHT Temperature and Humidity Sensor #include <SparkFun_RHT03.h> // Adafruit RGB LCD Shield 16x2 #include <Adafruit_RGBLCDShield.h> // Wire #include <Wire.h> // DS3231 RTC Date and Time #include <RTClib.h> // SD Card #include <SPI.h> #include <SD.h> // RHT Temperature and Humidity Sensor // RHT03 data pin Digital 5 const int RHT03_DATA_PIN = 5; // This creates a RTH03 object, which we'll use to interact with the sensor RHT03 rht; float latestHumidity; float latestTempC; // Gas Sensors MQ // Hydrogen Gas Sensor - MQ-8 int iMQ8 = A0; int iMQ8Raw = 0; int iMQ8ppm = 0; // Two points are taken from the curve in datasheet. // With these two points, a line is formed which is // "approximately equivalent" to the original curve. float H2Curve[3] = {2.3, 0.93,-1.44}; // Carbon Monoxide & Flammable Gas Sensor - MQ-9 int iMQ9 = A1; int iMQ9Raw = 0; int iMQ9ppm = 0; // Carbon Monoxide Gas Sensor - MQ-7 int iMQ7 = A2; int iMQ7Raw = 0; int iMQ7ppm = 0; // Alcohol Gas Sensor - MQ-3 int iMQ3 = A3; int iMQ3Raw = 0; int iMQ3ppm = 0; // PIR Motion // Motion detector const int iMotion = 7; // Proximity int proximity = LOW; String Det = ""; // Adafruit RGB LCD Shield Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); // These #defines make it easy to set the backlight color #define OFF 0x0 #define RED 0x1 #define YELLOW 0x3 #define GREEN 0x2 #define TEAL 0x6 #define BLUE 0x4 #define VIOLET 0x5 #define WHITE 0x7 // Momentary Button int yy = 0; uint8_t momentaryButton = 0; // DS3231 RTC Date and Time RTC_DS3231 rtc; String sDate; String sTime; // SD Card const int chipSelect = 10; String zzzzzz = ""; // LED Green int iLEDGreen = 2; // Rocker Switch - SPST (Round) int iSS1 = 3; // State int iSS1State = 0; // HC-SR04 Ultrasonic Sensor int iTrig = 8; int iEcho = 9; // Stores the distance measured by the distance sensor float distance = 0; // Software Version Information String uid = ""; // Version String sver = "15-18"; void loop() { // Adafruit RGB LCD Shield // Clear RGBLCDShield.clear(); // iLEDGreen LOW digitalWrite(iLEDGreen, LOW ); // RHT Temperature and Humidity Sensor isRHT03(); // Gas Sensors MQ isGasSensor(); // isPIR Motion isPIR(); // DS3231 RTC Date and Time isRTC(); // HC-SR04 Ultrasonic Sensor isHCSR04(); // Adafruit RGB LCD Shield // Display isDisplay(); // Slide Switch // Read the state of the iSS1 value iSS1State = digitalRead(iSS1); // If it is the Slide Switch State is HIGH if (iSS1State == HIGH) { // iLEDGreen HIGH digitalWrite(iLEDGreen, HIGH ); // MicroSD Card isSD(); } else { // iLEDGreen LOW digitalWrite(iLEDGreen, LOW ); } // Delay delay( 500 ); }
/* 
***** Don Luc Electronics © *****
Software Version Information
Project #15: Environment – HC-SR04 Ultrasonic Sensor – Mk18
10-05
DL2110Mk05p.ino
1 x Arduino UNO - R3
1 x ProtoScrewShield
1 x RGB LCD Shield 16x2 Character Negative Display
1 x HC-SR04 Ultrasonic Sensor
1 x ChronoDot - Ultra-Precise Real Time Clock - v2.1
1 x CR1632 Batteries
1 x MicroSD Card Breakout Board+
1 x MicroSD 2.0 GB
1 x Rocker Switch - SPST (Round)
1 x 10K Ohm
1 x LED Green
1 x 220 Ohm
1 x Adafruit PowerBoost 500 Shield
1 x Lithium Ion Battery - 3.7v 2000mAh
4 x Pololu Carrier for MQ Gas Sensors
1 x SparkFun Hydrogen Gas Sensor - MQ-8
1 x 4.7K Ohm
1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9
1 x 22k Ohm
1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7
1 x 10K Ohm
1 x SparkFun Alcohol Gas Sensor - MQ-3
1 x 220k Ohm
1 x Temperature and Humidity Sensor - RHT03
1 x PIR Motion Sensor (JST)
1 x SparkFun Solderable Half-Breadboard
1 x Half-Breadboard
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// EEPROM Library to Read and Write EEPROM with Unique ID for Unit
#include <EEPROM.h>
// RHT Temperature and Humidity Sensor
#include <SparkFun_RHT03.h>
// Adafruit RGB LCD Shield 16x2
#include <Adafruit_RGBLCDShield.h>
// Wire
#include <Wire.h>
// DS3231 RTC Date and Time
#include <RTClib.h>
// SD Card
#include <SPI.h>
#include <SD.h>

// RHT Temperature and Humidity Sensor
// RHT03 data pin Digital 5
const int RHT03_DATA_PIN = 5;
// This creates a RTH03 object, which we'll use to interact with the sensor
RHT03 rht;
float latestHumidity;
float latestTempC;

// Gas Sensors MQ
// Hydrogen Gas Sensor - MQ-8
int iMQ8 = A0;
int iMQ8Raw = 0;
int iMQ8ppm = 0;
// Two points are taken from the curve in datasheet.
// With these two points, a line is formed which is
// "approximately equivalent" to the original curve.
float H2Curve[3] = {2.3, 0.93,-1.44};

// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int iMQ9 = A1;
int iMQ9Raw = 0;
int iMQ9ppm = 0;

// Carbon Monoxide Gas Sensor - MQ-7
int iMQ7 = A2;
int iMQ7Raw = 0;
int iMQ7ppm = 0;

// Alcohol Gas Sensor - MQ-3
int iMQ3 = A3;
int iMQ3Raw = 0;
int iMQ3ppm = 0;

// PIR Motion
// Motion detector
const int iMotion = 7;
// Proximity
int proximity = LOW;
String Det = "";

// Adafruit RGB LCD Shield
Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield();
// These #defines make it easy to set the backlight color
#define OFF 0x0
#define RED 0x1
#define YELLOW 0x3
#define GREEN 0x2
#define TEAL 0x6
#define BLUE 0x4
#define VIOLET 0x5
#define WHITE 0x7
// Momentary Button
int yy = 0;
uint8_t momentaryButton = 0;

// DS3231 RTC Date and Time
RTC_DS3231 rtc;
String sDate;
String sTime;

// SD Card
const int chipSelect = 10;
String zzzzzz = "";

// LED Green
int iLEDGreen = 2;

// Rocker Switch - SPST (Round)
int iSS1 = 3;
// State
int iSS1State = 0;

// HC-SR04 Ultrasonic Sensor
int iTrig = 8;
int iEcho = 9;
// Stores the distance measured by the distance sensor
float distance = 0;

// Software Version Information
String uid = "";
// Version
String sver = "15-18";

void loop()
{
     
  // Adafruit RGB LCD Shield
  // Clear
  RGBLCDShield.clear();

  // iLEDGreen LOW
  digitalWrite(iLEDGreen,  LOW );
  
  // RHT Temperature and Humidity Sensor
  isRHT03();

  // Gas Sensors MQ
  isGasSensor();

  // isPIR Motion
  isPIR();

  // DS3231 RTC Date and Time
  isRTC();
  
  // HC-SR04 Ultrasonic Sensor
  isHCSR04();

  // Adafruit RGB LCD Shield
  // Display
  isDisplay();

  // Slide Switch
  // Read the state of the iSS1 value
  iSS1State = digitalRead(iSS1);
  
  // If it is the Slide Switch State is HIGH
  if (iSS1State == HIGH) {

    // iLEDGreen HIGH
    digitalWrite(iLEDGreen,  HIGH );
    
    // MicroSD Card
    isSD();

  } else {

    // iLEDGreen LOW
    digitalWrite(iLEDGreen,  LOW );
  
  }

  // Delay
  delay( 500 );
 
}

getEEPROM.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// EEPROM
// isUID EEPROM Unique ID
void isUID()
{
// Is Unit ID
uid = "";
for (int x = 0; x < 5; x++)
{
uid = uid + char(EEPROM.read(x));
}
}
// EEPROM // isUID EEPROM Unique ID void isUID() { // Is Unit ID uid = ""; for (int x = 0; x < 5; x++) { uid = uid + char(EEPROM.read(x)); } }
// EEPROM
// isUID EEPROM Unique ID
void isUID()
{
  
  // Is Unit ID
  uid = "";
  for (int x = 0; x < 5; x++)
  {
    uid = uid + char(EEPROM.read(x));
  }
  
}

getGasSensorMQ.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Gas Sensors MQ
// Gas Sensor
void isGasSensor() {
// Read in analog value from each gas sensors
// Hydrogen Gas Sensor - MQ-8
iMQ8Raw = analogRead( iMQ8 );
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
iMQ9Raw = analogRead( iMQ9 );
// Carbon Monoxide Gas Sensor - MQ-7
iMQ7Raw = analogRead( iMQ7 );
// Alcohol Gas Sensor - MQ-3
iMQ3Raw = analogRead( iMQ3 );
// Caclulate the PPM of each gas sensors
// Hydrogen Gas Sensor - MQ-8
iMQ8ppm = isMQ8( iMQ8Raw );
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
iMQ9ppm = isMQ9( iMQ9Raw );
// Carbon Monoxide Gas Sensor - MQ-7
iMQ7ppm = isMQ7( iMQ7Raw );
// Alcohol Gas Sensor - MQ-3
iMQ3ppm = isMQ3( iMQ3Raw );
}
// Hydrogen Gas Sensor - MQ-8 - PPM
int isMQ8(double rawValue) {
// RvRo
double RvRo = rawValue * (3.3 / 1023);
return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0])));
}
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int isMQ9(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double ppm = 3.027*exp(1.0698*( RvRo ));
return ppm;
}
// Carbon Monoxide Gas Sensor - MQ-7
int isMQ7(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double ppm = 3.027*exp(1.0698*( RvRo ));
return ppm;
}
// Alcohol Gas Sensor - MQ-3
int isMQ3(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double bac = RvRo * 0.21;
return bac;
}
// Gas Sensors MQ // Gas Sensor void isGasSensor() { // Read in analog value from each gas sensors // Hydrogen Gas Sensor - MQ-8 iMQ8Raw = analogRead( iMQ8 ); // Carbon Monoxide & Flammable Gas Sensor - MQ-9 iMQ9Raw = analogRead( iMQ9 ); // Carbon Monoxide Gas Sensor - MQ-7 iMQ7Raw = analogRead( iMQ7 ); // Alcohol Gas Sensor - MQ-3 iMQ3Raw = analogRead( iMQ3 ); // Caclulate the PPM of each gas sensors // Hydrogen Gas Sensor - MQ-8 iMQ8ppm = isMQ8( iMQ8Raw ); // Carbon Monoxide & Flammable Gas Sensor - MQ-9 iMQ9ppm = isMQ9( iMQ9Raw ); // Carbon Monoxide Gas Sensor - MQ-7 iMQ7ppm = isMQ7( iMQ7Raw ); // Alcohol Gas Sensor - MQ-3 iMQ3ppm = isMQ3( iMQ3Raw ); } // Hydrogen Gas Sensor - MQ-8 - PPM int isMQ8(double rawValue) { // RvRo double RvRo = rawValue * (3.3 / 1023); return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0]))); } // Carbon Monoxide & Flammable Gas Sensor - MQ-9 int isMQ9(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double ppm = 3.027*exp(1.0698*( RvRo )); return ppm; } // Carbon Monoxide Gas Sensor - MQ-7 int isMQ7(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double ppm = 3.027*exp(1.0698*( RvRo )); return ppm; } // Alcohol Gas Sensor - MQ-3 int isMQ3(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double bac = RvRo * 0.21; return bac; }
// Gas Sensors MQ
// Gas Sensor
void isGasSensor() {

  // Read in analog value from each gas sensors
  
  // Hydrogen Gas Sensor - MQ-8
  iMQ8Raw = analogRead( iMQ8 );

  // Carbon Monoxide & Flammable Gas Sensor - MQ-9
  iMQ9Raw = analogRead( iMQ9 );  

  // Carbon Monoxide Gas Sensor - MQ-7
  iMQ7Raw = analogRead( iMQ7 );

  // Alcohol Gas Sensor - MQ-3
  iMQ3Raw = analogRead( iMQ3 );
  
  // Caclulate the PPM of each gas sensors

  // Hydrogen Gas Sensor - MQ-8
  iMQ8ppm = isMQ8( iMQ8Raw );

  // Carbon Monoxide & Flammable Gas Sensor - MQ-9
  iMQ9ppm = isMQ9( iMQ9Raw ); 

  // Carbon Monoxide Gas Sensor - MQ-7
  iMQ7ppm = isMQ7( iMQ7Raw ); 

  // Alcohol Gas Sensor - MQ-3
  iMQ3ppm = isMQ3( iMQ3Raw ); 

}
// Hydrogen Gas Sensor - MQ-8 - PPM
int isMQ8(double rawValue) {

  // RvRo
  double RvRo = rawValue * (3.3 / 1023);

  return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0])));
  
}
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int isMQ9(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double ppm = 3.027*exp(1.0698*( RvRo ));
  return ppm;
  
}
// Carbon Monoxide Gas Sensor - MQ-7
int isMQ7(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double ppm = 3.027*exp(1.0698*( RvRo ));
  return ppm;
  
}
// Alcohol Gas Sensor - MQ-3
int isMQ3(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double bac = RvRo * 0.21;
  return bac;
  
}

getHC-SR04.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// HC-SR04 Ultrasonic Sensor
// Setup HC-SR04
void setupHCSR04() {
// The trigger iTrig will output pulses of electricity
pinMode(iTrig, OUTPUT);
// The echo iEcho will measure the duration of pulses coming back from the distance sensor
pinMode(iEcho, INPUT);
}
// HC-SR04
void isHCSR04() {
// Variable to store the distance measured by the sensor
distance = isDistance();
}
// Distance
float isDistance() {
// Variable to store the time it takes for a ping to bounce off an object
float echoTime;
// Variable to store the distance calculated from the echo time
float calculatedDistance;
// Send out an ultrasonic pulse that's 10ms long
digitalWrite(iTrig, HIGH);
delayMicroseconds(10);
digitalWrite(iTrig, LOW);
// Use the pulseIn command to see how long it takes for the
// pulse to bounce back to the sensor
echoTime = pulseIn(iEcho, HIGH);
// Calculate the distance of the object that reflected the pulse
// (half the bounce time multiplied by the speed of sound)
// cm = 58.0
calculatedDistance = echoTime / 58.0;
// Send back the distance that was calculated
return calculatedDistance;
}
// HC-SR04 Ultrasonic Sensor // Setup HC-SR04 void setupHCSR04() { // The trigger iTrig will output pulses of electricity pinMode(iTrig, OUTPUT); // The echo iEcho will measure the duration of pulses coming back from the distance sensor pinMode(iEcho, INPUT); } // HC-SR04 void isHCSR04() { // Variable to store the distance measured by the sensor distance = isDistance(); } // Distance float isDistance() { // Variable to store the time it takes for a ping to bounce off an object float echoTime; // Variable to store the distance calculated from the echo time float calculatedDistance; // Send out an ultrasonic pulse that's 10ms long digitalWrite(iTrig, HIGH); delayMicroseconds(10); digitalWrite(iTrig, LOW); // Use the pulseIn command to see how long it takes for the // pulse to bounce back to the sensor echoTime = pulseIn(iEcho, HIGH); // Calculate the distance of the object that reflected the pulse // (half the bounce time multiplied by the speed of sound) // cm = 58.0 calculatedDistance = echoTime / 58.0; // Send back the distance that was calculated return calculatedDistance; }
// HC-SR04 Ultrasonic Sensor
// Setup HC-SR04
void setupHCSR04() {

  // The trigger iTrig will output pulses of electricity
  pinMode(iTrig, OUTPUT);
  // The echo iEcho will measure the duration of pulses coming back from the distance sensor
  pinMode(iEcho, INPUT);
  
}
// HC-SR04
void isHCSR04() {

  // Variable to store the distance measured by the sensor
  distance = isDistance();
    
}
// Distance
float isDistance() {
  
  // Variable to store the time it takes for a ping to bounce off an object
  float echoTime;
  // Variable to store the distance calculated from the echo time
  float calculatedDistance;

  // Send out an ultrasonic pulse that's 10ms long
  digitalWrite(iTrig, HIGH);
  delayMicroseconds(10);
  digitalWrite(iTrig, LOW);

  // Use the pulseIn command to see how long it takes for the
  // pulse to bounce back to the sensor
  echoTime = pulseIn(iEcho, HIGH);

  // Calculate the distance of the object that reflected the pulse
  // (half the bounce time multiplied by the speed of sound)
  // cm = 58.0
  calculatedDistance = echoTime / 58.0;

  // Send back the distance that was calculated
  return calculatedDistance;
  
}

getPIR.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// PIR Motion
// Setup PIR
void setupPIR() {
// Setup PIR Montion
pinMode(iMotion, INPUT_PULLUP);
}
// isPIR Motion
void isPIR() {
// Proximity
proximity = digitalRead(iMotion);
if (proximity == LOW)
{
// PIR Motion Sensor's LOW, Motion is detected
Det = "Motion Yes";
}
else
{
// PIR Motion Sensor's HIGH
Det = "No";
}
}
// PIR Motion // Setup PIR void setupPIR() { // Setup PIR Montion pinMode(iMotion, INPUT_PULLUP); } // isPIR Motion void isPIR() { // Proximity proximity = digitalRead(iMotion); if (proximity == LOW) { // PIR Motion Sensor's LOW, Motion is detected Det = "Motion Yes"; } else { // PIR Motion Sensor's HIGH Det = "No"; } }
// PIR Motion
// Setup PIR
void setupPIR() {

  // Setup PIR Montion
  pinMode(iMotion, INPUT_PULLUP);
  
}
// isPIR Motion
void isPIR() {

  // Proximity
  proximity = digitalRead(iMotion);
  if (proximity == LOW) 
  {

    // PIR Motion Sensor's LOW, Motion is detected
    Det = "Motion Yes";

  }
  else
  {

    // PIR Motion Sensor's HIGH
    Det = "No";
    
  }
  
}

getRGBLCDShield.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Adafruit RGB LCD Shield
// Setup RGB LCD Shield
void isSetupRGBLCDShield() {
// Adafruit RGB LCD Shield
// Set up the LCD's number of columns and rows:
RGBLCDShield.begin(16, 2);
// Set the cursor to column 0, line 0
RGBLCDShield.setBacklight(RED);
// Don luc
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print("Don Luc");
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Electronics
RGBLCDShield.print("Electronics");
// Delay
delay(5000);
// Clear
RGBLCDShield.clear();
// Set the cursor to column 0, line 0
RGBLCDShield.setBacklight(TEAL);
// Version
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print("Version: " + sver);
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Unit ID
RGBLCDShield.print("Unit ID: " + uid);
// Delay
delay(5000);
// Clear
RGBLCDShield.clear();
}
// isDisplay
void isDisplay() {
// Momentary Button
momentaryButton = RGBLCDShield.readButtons();
switch ( yy ) {
case 1:
// RHT Temperature and Humidity Sensor
// Set the cursor to column 0, line 0
RGBLCDShield.setCursor(0,0);
// Temperature C
RGBLCDShield.print( "Temp C: " );
RGBLCDShield.print( latestTempC );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Humidity
RGBLCDShield.print( "Humidity: " );
RGBLCDShield.print( latestHumidity );
break;
case 2:
// Set the cursor to column 0, line 0
// PIR Motion Sensor
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print( "PIR: " );
RGBLCDShield.print( Det );
// Set the cursor to column 0, line 1
// HC-SR04 Ultrasonic Sensor
RGBLCDShield.setCursor(0, 1);
RGBLCDShield.print( "HC-SR04: " );
RGBLCDShield.print( distance );
break;
case 3:
// Gas Sensors 1
// Set the cursor to column 0, line 0
RGBLCDShield.setCursor(0,0);
// Hydrogen Gas Sensor - MQ-8
RGBLCDShield.print( "MQ-8: " );
RGBLCDShield.print( iMQ8ppm );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
RGBLCDShield.print( "MQ-9: " );
RGBLCDShield.print( iMQ9ppm );
break;
case 4:
// Gas Sensors 2
// Set the cursor to column 0, line 0
RGBLCDShield.setCursor(0,0);
// Carbon Monoxide Gas Sensor - MQ-7
RGBLCDShield.print( "MQ-7: " );
RGBLCDShield.print( iMQ7ppm );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Alcohol Gas Sensor - MQ-3
RGBLCDShield.print( "MQ-3: " );
RGBLCDShield.print( iMQ3ppm );
break;
case 5:
// DS3231 RTC Date and Time
// Date and Time
DateTime now = rtc.now();
// Set the cursor to column 0, line 0
// Date
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print( sDate );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Time
RGBLCDShield.print( sTime );
break;
default:
// Don luc Electronics
yy = 5;
RGBLCDShield.setBacklight(RED);
// Set the cursor to column 0, line 0
// Don luc
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print("Don Luc");
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Electronics
RGBLCDShield.print("Electronics");
}
if ( momentaryButton ) {
if ( momentaryButton & BUTTON_UP ) {
yy = 1;
// RHT Temperature and Humidity Sensor
RGBLCDShield.setBacklight(GREEN);
}
if ( momentaryButton & BUTTON_DOWN ) {
yy = 2;
// PIR Motion Sensor
RGBLCDShield.setBacklight(VIOLET);
}
if ( momentaryButton & BUTTON_LEFT ) {
yy = 3;
// Gas Sensors 1
RGBLCDShield.setBacklight(TEAL);
}
if ( momentaryButton & BUTTON_RIGHT ) {
yy = 4;
// Gas Sensors 2
RGBLCDShield.setBacklight(YELLOW);
}
if ( momentaryButton & BUTTON_SELECT ) {
yy = 5;
// DS3231 RTC Date and Time
RGBLCDShield.setBacklight(WHITE);
}
}
}
// Adafruit RGB LCD Shield // Setup RGB LCD Shield void isSetupRGBLCDShield() { // Adafruit RGB LCD Shield // Set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); // Set the cursor to column 0, line 0 RGBLCDShield.setBacklight(RED); // Don luc RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Electronics RGBLCDShield.print("Electronics"); // Delay delay(5000); // Clear RGBLCDShield.clear(); // Set the cursor to column 0, line 0 RGBLCDShield.setBacklight(TEAL); // Version RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Version: " + sver); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Unit ID RGBLCDShield.print("Unit ID: " + uid); // Delay delay(5000); // Clear RGBLCDShield.clear(); } // isDisplay void isDisplay() { // Momentary Button momentaryButton = RGBLCDShield.readButtons(); switch ( yy ) { case 1: // RHT Temperature and Humidity Sensor // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); // Temperature C RGBLCDShield.print( "Temp C: " ); RGBLCDShield.print( latestTempC ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Humidity RGBLCDShield.print( "Humidity: " ); RGBLCDShield.print( latestHumidity ); break; case 2: // Set the cursor to column 0, line 0 // PIR Motion Sensor RGBLCDShield.setCursor(0,0); RGBLCDShield.print( "PIR: " ); RGBLCDShield.print( Det ); // Set the cursor to column 0, line 1 // HC-SR04 Ultrasonic Sensor RGBLCDShield.setCursor(0, 1); RGBLCDShield.print( "HC-SR04: " ); RGBLCDShield.print( distance ); break; case 3: // Gas Sensors 1 // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); // Hydrogen Gas Sensor - MQ-8 RGBLCDShield.print( "MQ-8: " ); RGBLCDShield.print( iMQ8ppm ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Carbon Monoxide & Flammable Gas Sensor - MQ-9 RGBLCDShield.print( "MQ-9: " ); RGBLCDShield.print( iMQ9ppm ); break; case 4: // Gas Sensors 2 // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); // Carbon Monoxide Gas Sensor - MQ-7 RGBLCDShield.print( "MQ-7: " ); RGBLCDShield.print( iMQ7ppm ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Alcohol Gas Sensor - MQ-3 RGBLCDShield.print( "MQ-3: " ); RGBLCDShield.print( iMQ3ppm ); break; case 5: // DS3231 RTC Date and Time // Date and Time DateTime now = rtc.now(); // Set the cursor to column 0, line 0 // Date RGBLCDShield.setCursor(0,0); RGBLCDShield.print( sDate ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Time RGBLCDShield.print( sTime ); break; default: // Don luc Electronics yy = 5; RGBLCDShield.setBacklight(RED); // Set the cursor to column 0, line 0 // Don luc RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Electronics RGBLCDShield.print("Electronics"); } if ( momentaryButton ) { if ( momentaryButton & BUTTON_UP ) { yy = 1; // RHT Temperature and Humidity Sensor RGBLCDShield.setBacklight(GREEN); } if ( momentaryButton & BUTTON_DOWN ) { yy = 2; // PIR Motion Sensor RGBLCDShield.setBacklight(VIOLET); } if ( momentaryButton & BUTTON_LEFT ) { yy = 3; // Gas Sensors 1 RGBLCDShield.setBacklight(TEAL); } if ( momentaryButton & BUTTON_RIGHT ) { yy = 4; // Gas Sensors 2 RGBLCDShield.setBacklight(YELLOW); } if ( momentaryButton & BUTTON_SELECT ) { yy = 5; // DS3231 RTC Date and Time RGBLCDShield.setBacklight(WHITE); } } }
// Adafruit RGB LCD Shield
// Setup RGB LCD Shield
void isSetupRGBLCDShield() {

  // Adafruit RGB LCD Shield
  // Set up the LCD's number of columns and rows: 
  RGBLCDShield.begin(16, 2);

  // Set the cursor to column 0, line 0
  RGBLCDShield.setBacklight(RED);
  // Don luc 
  RGBLCDShield.setCursor(0,0);
  RGBLCDShield.print("Don Luc");
  // Set the cursor to column 0, line 1
  RGBLCDShield.setCursor(0, 1);
  // Electronics
  RGBLCDShield.print("Electronics");
  // Delay
  delay(5000);
  // Clear
  RGBLCDShield.clear();

  // Set the cursor to column 0, line 0
  RGBLCDShield.setBacklight(TEAL);
  // Version 
  RGBLCDShield.setCursor(0,0);
  RGBLCDShield.print("Version: " + sver);
  // Set the cursor to column 0, line 1
  RGBLCDShield.setCursor(0, 1);
  // Unit ID
  RGBLCDShield.print("Unit ID: " + uid);
  // Delay
  delay(5000);
  // Clear
  RGBLCDShield.clear();
  
}
// isDisplay
void isDisplay() {

  // Momentary Button
  momentaryButton = RGBLCDShield.readButtons();

  switch ( yy ) {
    case 1:
    
      // RHT Temperature and Humidity Sensor
      // Set the cursor to column 0, line 0
      RGBLCDShield.setCursor(0,0);
      // Temperature C
      RGBLCDShield.print( "Temp C: " );
      RGBLCDShield.print( latestTempC );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Humidity
      RGBLCDShield.print( "Humidity: " );
      RGBLCDShield.print( latestHumidity );

      break;
    case 2:
    
      // Set the cursor to column 0, line 0
      // PIR Motion Sensor
      RGBLCDShield.setCursor(0,0);
      RGBLCDShield.print( "PIR: " );
      RGBLCDShield.print( Det );
      // Set the cursor to column 0, line 1
      // HC-SR04 Ultrasonic Sensor
      RGBLCDShield.setCursor(0, 1);
      RGBLCDShield.print( "HC-SR04: " );
      RGBLCDShield.print( distance );
      
      break;
    case 3:

      // Gas Sensors 1
      // Set the cursor to column 0, line 0
      RGBLCDShield.setCursor(0,0);
      // Hydrogen Gas Sensor - MQ-8
      RGBLCDShield.print( "MQ-8: " );
      RGBLCDShield.print( iMQ8ppm );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Carbon Monoxide & Flammable Gas Sensor - MQ-9
      RGBLCDShield.print( "MQ-9: " );
      RGBLCDShield.print( iMQ9ppm );
      
      break;
    case 4:

      // Gas Sensors 2
      // Set the cursor to column 0, line 0
      RGBLCDShield.setCursor(0,0);
      // Carbon Monoxide Gas Sensor - MQ-7
      RGBLCDShield.print( "MQ-7: " );
      RGBLCDShield.print( iMQ7ppm );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Alcohol Gas Sensor - MQ-3
      RGBLCDShield.print( "MQ-3: " );
      RGBLCDShield.print( iMQ3ppm );
      
      break;
    case 5:

      // DS3231 RTC Date and Time
      // Date and Time
      DateTime now = rtc.now();
      // Set the cursor to column 0, line 0
      // Date 
      RGBLCDShield.setCursor(0,0);
      RGBLCDShield.print( sDate );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Time
      RGBLCDShield.print( sTime );
      
      break;
    default:

      // Don luc Electronics
      yy = 5;
      RGBLCDShield.setBacklight(RED);
      // Set the cursor to column 0, line 0
      // Don luc 
      RGBLCDShield.setCursor(0,0);
      RGBLCDShield.print("Don Luc");
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Electronics
      RGBLCDShield.print("Electronics");

   }
   
   if ( momentaryButton ) {
    
    if ( momentaryButton & BUTTON_UP ) {
      
      yy = 1;
      // RHT Temperature and Humidity Sensor
      RGBLCDShield.setBacklight(GREEN);
      
    }
    
    if ( momentaryButton & BUTTON_DOWN ) {
      
      yy = 2;
      // PIR Motion Sensor
      RGBLCDShield.setBacklight(VIOLET);
      
    }
    
    if ( momentaryButton & BUTTON_LEFT ) {
      
      yy = 3;
      // Gas Sensors 1
      RGBLCDShield.setBacklight(TEAL);
      
    }
    
    if ( momentaryButton & BUTTON_RIGHT ) {

      yy = 4;
      // Gas Sensors 2
      RGBLCDShield.setBacklight(YELLOW);
    }
    
    if ( momentaryButton & BUTTON_SELECT ) {

      yy = 5;
      // DS3231 RTC Date and Time
      RGBLCDShield.setBacklight(WHITE);
   
    }
    
  }
  
}

getRHT.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// RHT Temperature and Humidity Sensor
// setup RHT Temperature and Humidity Sensor
void setupRTH03() {
// RHT Temperature and Humidity Sensor
// Call rht.begin() to initialize the sensor and our data pin
rht.begin(RHT03_DATA_PIN);
}
// RHT Temperature and Humidity Sensor
void isRHT03(){
// Call rht.update() to get new humidity and temperature values from the sensor.
int updateRet = rht.update();
// The humidity(), tempC(), and tempF() functions can be called -- after
// a successful update() -- to get the last humidity and temperature value
latestHumidity = rht.humidity();
latestTempC = rht.tempC();
}
// RHT Temperature and Humidity Sensor // setup RHT Temperature and Humidity Sensor void setupRTH03() { // RHT Temperature and Humidity Sensor // Call rht.begin() to initialize the sensor and our data pin rht.begin(RHT03_DATA_PIN); } // RHT Temperature and Humidity Sensor void isRHT03(){ // Call rht.update() to get new humidity and temperature values from the sensor. int updateRet = rht.update(); // The humidity(), tempC(), and tempF() functions can be called -- after // a successful update() -- to get the last humidity and temperature value latestHumidity = rht.humidity(); latestTempC = rht.tempC(); }
// RHT Temperature and Humidity Sensor
// setup RHT Temperature and Humidity Sensor
void setupRTH03() {

  // RHT Temperature and Humidity Sensor
  // Call rht.begin() to initialize the sensor and our data pin
  rht.begin(RHT03_DATA_PIN);
  
}
// RHT Temperature and Humidity Sensor
void isRHT03(){

  // Call rht.update() to get new humidity and temperature values from the sensor.
  int updateRet = rht.update();

  // The humidity(), tempC(), and tempF() functions can be called -- after 
  // a successful update() -- to get the last humidity and temperature value 
  latestHumidity = rht.humidity();
  latestTempC = rht.tempC();

}

getRTC.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// DS3231 RTC Date and Time
// Setup DS3231 RTC
void isSetupRTC() {
if (! rtc.begin()) {
while (1);
}
if (rtc.lostPower()) {
// Following line sets the RTC to the date & time this sketch was compiled
rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
// This line sets the RTC with an explicit date & time, for example to set
// January 21, 2014 at 3am you would call:
// rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
}
}
// DS3231 RTC Date and Time
void isRTC(){
// Date and Time
sDate = "";
sTime = "";
// Date Time
DateTime now = rtc.now();
// sData
sDate += String(now.year(), DEC);
sDate += "/";
sDate += String(now.month(), DEC);
sDate += "/";
sDate += String(now.day(), DEC);
// sTime
sTime += String(now.hour(), DEC);
sTime += ":";
sTime += String(now.minute(), DEC);
sTime += ":";
sTime += String(now.second(), DEC);
}
// DS3231 RTC Date and Time // Setup DS3231 RTC void isSetupRTC() { if (! rtc.begin()) { while (1); } if (rtc.lostPower()) { // Following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0)); } } // DS3231 RTC Date and Time void isRTC(){ // Date and Time sDate = ""; sTime = ""; // Date Time DateTime now = rtc.now(); // sData sDate += String(now.year(), DEC); sDate += "/"; sDate += String(now.month(), DEC); sDate += "/"; sDate += String(now.day(), DEC); // sTime sTime += String(now.hour(), DEC); sTime += ":"; sTime += String(now.minute(), DEC); sTime += ":"; sTime += String(now.second(), DEC); }
// DS3231 RTC Date and Time
// Setup DS3231 RTC
void isSetupRTC() {

  if (! rtc.begin()) {
    while (1);
  }

  if (rtc.lostPower()) {
    // Following line sets the RTC to the date & time this sketch was compiled
    rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
    // This line sets the RTC with an explicit date & time, for example to set
    // January 21, 2014 at 3am you would call:
    // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
  }
  
}
// DS3231 RTC Date and Time
void isRTC(){
 
    // Date and Time
    sDate = "";
    sTime = "";
    // Date Time
    DateTime now = rtc.now();

    // sData
    sDate += String(now.year(), DEC);
    sDate += "/";
    sDate += String(now.month(), DEC);
    sDate += "/";
    sDate += String(now.day(), DEC);
  
    // sTime
    sTime += String(now.hour(), DEC);
    sTime += ":";
    sTime += String(now.minute(), DEC);
    sTime += ":";
    sTime += String(now.second(), DEC);
    
}

getSD.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// MicroSD Card
// MicroSD Setup
void setupSD() {
// MicroSD Card
if (!SD.begin(chipSelect)) {
while (true);
}
}
// MicroSD Card
void isSD() {
zzzzzz = "";
// Don Luc Electronics © (1983-2021)
// Arduino Data
// EEPROM Unique ID
// Version
// Date
// Time
// Temperature Celsius
// Humidity
// Hydrogen Gas Sensor - MQ-8
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
// Carbon Monoxide Gas Sensor - MQ-7
// Alcohol Gas Sensor - MQ-3
// PIR Motion
// HC-SR04 Ultrasonic Sensor
// EEPROM Unique ID|Version|Date|Time|Temperature Celsius|Humidity|MQ-8|MQ-9|MQ-7|MQ-3|PIR Motion|HC-SR04|
zzzzzz = uid + "|" + sver + "|" + sDate + "|" + sTime + "|" + latestTempC + "|" + latestHumidity + "|"
+ iMQ8ppm + "|" + iMQ9ppm + "|" + iMQ7ppm + "|" +
iMQ3ppm + "|" + Det + "|" + distance + "|";
// Open the file. Note that only one file can be open at a time,
// so you have to close this one before opening another.
File dataFile = SD.open("arddata.txt", FILE_WRITE);
// If the file is available, write to it:
if ( dataFile ) {
dataFile.println( zzzzzz );
dataFile.close();
}
}
// MicroSD Card // MicroSD Setup void setupSD() { // MicroSD Card if (!SD.begin(chipSelect)) { while (true); } } // MicroSD Card void isSD() { zzzzzz = ""; // Don Luc Electronics © (1983-2021) // Arduino Data // EEPROM Unique ID // Version // Date // Time // Temperature Celsius // Humidity // Hydrogen Gas Sensor - MQ-8 // Carbon Monoxide & Flammable Gas Sensor - MQ-9 // Carbon Monoxide Gas Sensor - MQ-7 // Alcohol Gas Sensor - MQ-3 // PIR Motion // HC-SR04 Ultrasonic Sensor // EEPROM Unique ID|Version|Date|Time|Temperature Celsius|Humidity|MQ-8|MQ-9|MQ-7|MQ-3|PIR Motion|HC-SR04| zzzzzz = uid + "|" + sver + "|" + sDate + "|" + sTime + "|" + latestTempC + "|" + latestHumidity + "|" + iMQ8ppm + "|" + iMQ9ppm + "|" + iMQ7ppm + "|" + iMQ3ppm + "|" + Det + "|" + distance + "|"; // Open the file. Note that only one file can be open at a time, // so you have to close this one before opening another. File dataFile = SD.open("arddata.txt", FILE_WRITE); // If the file is available, write to it: if ( dataFile ) { dataFile.println( zzzzzz ); dataFile.close(); } }
// MicroSD Card
// MicroSD Setup
void setupSD() {

  // MicroSD Card
  if (!SD.begin(chipSelect)) {

     while (true);

  }
 
}
// MicroSD Card
void isSD() {

  zzzzzz = "";

  // Don Luc Electronics © (1983-2021)
  // Arduino Data
  // EEPROM Unique ID
  // Version
  // Date
  // Time
  // Temperature Celsius
  // Humidity
  // Hydrogen Gas Sensor - MQ-8
  // Carbon Monoxide & Flammable Gas Sensor - MQ-9
  // Carbon Monoxide Gas Sensor - MQ-7
  // Alcohol Gas Sensor - MQ-3
  // PIR Motion
  // HC-SR04 Ultrasonic Sensor
  // EEPROM Unique ID|Version|Date|Time|Temperature Celsius|Humidity|MQ-8|MQ-9|MQ-7|MQ-3|PIR Motion|HC-SR04|
  zzzzzz = uid + "|" + sver + "|" + sDate + "|" + sTime + "|" + latestTempC + "|" + latestHumidity + "|"
  + iMQ8ppm + "|" + iMQ9ppm + "|" + iMQ7ppm + "|" + 
  iMQ3ppm + "|" + Det + "|" + distance + "|";

  
  // Open the file. Note that only one file can be open at a time,
  // so you have to close this one before opening another.

  File dataFile = SD.open("arddata.txt", FILE_WRITE);

  // If the file is available, write to it:
  if ( dataFile ) {

    dataFile.println( zzzzzz );

    dataFile.close();

  }
  
}

setup.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Setup
void setup()
{
// EEPROM Unique ID
isUID();
// RHT Temperature and Humidity Sensor
// Setup RTH03 Temperature and Humidity Sensor
setupRTH03();
// PIR Motion
// Setup PIR
setupPIR();
// Setup DS3231 RTC
isSetupRTC();
//MicroSD Card
setupSD();
// Initialize the LED Green
pinMode(iLEDGreen, OUTPUT);
// iLEDGreen LOW
digitalWrite(iLEDGreen, LOW );
// Slide Switch
pinMode(iSS1, INPUT);
// Setup HC-SR04
setupHCSR04();
// Adafruit RGB LCD Shield
isSetupRGBLCDShield();
}
// Setup void setup() { // EEPROM Unique ID isUID(); // RHT Temperature and Humidity Sensor // Setup RTH03 Temperature and Humidity Sensor setupRTH03(); // PIR Motion // Setup PIR setupPIR(); // Setup DS3231 RTC isSetupRTC(); //MicroSD Card setupSD(); // Initialize the LED Green pinMode(iLEDGreen, OUTPUT); // iLEDGreen LOW digitalWrite(iLEDGreen, LOW ); // Slide Switch pinMode(iSS1, INPUT); // Setup HC-SR04 setupHCSR04(); // Adafruit RGB LCD Shield isSetupRGBLCDShield(); }
// Setup
void setup()
{
    
  // EEPROM Unique ID
  isUID();
  
  // RHT Temperature and Humidity Sensor
  // Setup RTH03 Temperature and Humidity Sensor
  setupRTH03();

  // PIR Motion
  // Setup PIR
  setupPIR();

  // Setup DS3231 RTC
  isSetupRTC();

  //MicroSD Card
  setupSD();

  // Initialize the LED Green
  pinMode(iLEDGreen, OUTPUT);
  // iLEDGreen LOW
  digitalWrite(iLEDGreen,  LOW );

  // Slide Switch
  pinMode(iSS1, INPUT);

  // Setup HC-SR04
  setupHCSR04();

  // Adafruit RGB LCD Shield
  isSetupRGBLCDShield();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Research & Development (R & D)
  • Desktop Applications (Windows, OSX, Linux, Multi-OS, Multi-Tier, etc…)
  • Mobile Applications (Android, iOS, Blackberry, Windows Mobile, Windows CE, etc…)
  • Web Applications (LAMP, Scripting, Java, ASP, ASP.NET, RoR, Wakanda, etc…)
  • Social Media Programming & Integration (Facebook, Twitter, YouTube, Pinterest, etc…)
  • Content Management Systems (WordPress, Drupal, Joomla, Moodle, etc…)
  • Bulletin Boards (phpBB, SMF, Vanilla, jobberBase, etc…)
  • eCommerce (WooCommerce, OSCommerce, ZenCart, PayPal Shopping Cart, etc…)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics
  • DOS, Windows, OSX, Linux, iOS, Android, Multi-OS
  • Linux-Apache-PHP-MySQL

Follow Us

J. Luc Paquin – Curriculum Vitae – 2021 English & Español
https://www.jlpconsultants.com/luc/

Web: https://www.donluc.com/
Web: https://www.jlpconsultants.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #15: Environment – MicroSD Card – Mk17

——

#DonLucElectronics #DonLuc #Environment #MQ #PIR #RHT03 #RTC #ArduinoUNO #Arduino #AdafruitPowerBoost #Project #Programming #Electronics #Microcontrollers #Consultant

——

MicroSD Card

——

MicroSD Card

——

MicroSD Card

——

MicroSD Card

——

MicroSD Card Breakout Board+

Not just a simple breakout board, this microSD adapter goes the extra mile – designed for ease of use.

  • -Onboard 5v->3v regulator provides 150mA for power-hungry cards
  • -3v level shifting means you can use this with ease on either 3v or 5v systems
  • -Uses a proper level shifting chip, not resistors: less problems, and faster read/write access
  • -Use 3 or 4 digital pins to read and write 2Gb+ of storage
  • -Activity LED lights up when the SD card is being read or written
  • -Push-push socket with card slightly over the edge of the PCB so its easy to insert and remove
  • -Comes with 0.1″ header so you can get it on a breadboard or use wires

To use with an Arduino, connect GND to ground, 5V to 5V, CLK to pin 13, DO to pin 12, DI to pin 11, and CS to pin 10.

DL2110Mk04

1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x RGB LCD Shield 16×2 Character Negative Display
1 x ChronoDot – Ultra-Precise Real Time Clock – v2.1
1 x MicroSD Card Breakout Board+
1 x MicroSD 2.0 GB
1 x Rocker Switch – SPST (Round)
1 x 10K Ohm
1 x LED Green
1 x 220 Ohm
1 x Adafruit PowerBoost 500 Shield
1 x Lithium Ion Battery – 3.7v 2000mAh
4 x Pololu Carrier for MQ Gas Sensors
1 x SparkFun Hydrogen Gas Sensor – MQ-8
1 x 4.7K Ohm
1 x Pololu Carbon Monoxide & Flammable Gas Sensor – MQ-9
1 x 22k Ohm
1 x SparkFun Carbon Monoxide Gas Sensor – MQ-7
1 x 10K Ohm
1 x SparkFun Alcohol Gas Sensor – MQ-3
1 x 220k Ohm
1 x Temperature and Humidity Sensor- RHT03
1 x PIR Motion Sensor (JST)
1 x SparkFun Solderable Half-Breadboard
1 x Half-Breadboard
1 x SparkFun Cerberus USB Cable

Arduino UNO – R3

CLK – Digital 13
DO – Digital 12
DI – Digital 11
CS – Digital 10
PIR – Digital 7
RHT – Digital 5
RS0 – Digital 3
LEG – Digital 2
MQ8 – Analog 0
MQ9 – Analog 1
MQ7 – Analog 2
MQ3 – Analog 3
SDA – Analog 4
SCL – Analog 5
VIN – +5V
GND – GND

——

DL2110Mk04p.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
/*
***** Don Luc Electronics © *****
Software Version Information
Project #15: Environment – MicroSD Card – Mk17
10-04
DL2110Mk04p.ino
1 x Arduino UNO - R3
1 x ProtoScrewShield
1 x RGB LCD Shield 16x2 Character Negative Display
1 x ChronoDot - Ultra-Precise Real Time Clock - v2.1
1 x MicroSD Card Breakout Board+
1 x MicroSD 2.0 GB
1 x Rocker Switch - SPST (Round)
1 x 10K Ohm
1 x LED Green
1 x 220 Ohm
1 x Adafruit PowerBoost 500 Shield
1 x Lithium Ion Battery - 3.7v 2000mAh
4 x Pololu Carrier for MQ Gas Sensors
1 x SparkFun Hydrogen Gas Sensor - MQ-8
1 x 4.7K Ohm
1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9
1 x 22k Ohm
1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7
1 x 10K Ohm
1 x SparkFun Alcohol Gas Sensor - MQ-3
1 x 220k Ohm
1 x Temperature and Humidity Sensor - RHT03
1 x PIR Motion Sensor (JST)
1 x SparkFun Solderable Half-Breadboard
1 x Half-Breadboard
1 x SparkFun Cerberus USB Cable
*/
// Include the Library Code
// EEPROM Library to Read and Write EEPROM with Unique ID for Unit
#include <EEPROM.h>
// RHT Temperature and Humidity Sensor
#include <SparkFun_RHT03.h>
// Adafruit RGB LCD Shield 16x2
#include <Adafruit_RGBLCDShield.h>
// Wire
#include <Wire.h>
// DS3231 RTC Date and Time
#include <RTClib.h>
// SD Card
#include <SPI.h>
#include <SD.h>
// RHT Temperature and Humidity Sensor
// RHT03 data pin Digital 5
const int RHT03_DATA_PIN = 5;
// This creates a RTH03 object, which we'll use to interact with the sensor
RHT03 rht;
float latestHumidity;
float latestTempC;
// Gas Sensors MQ
// Hydrogen Gas Sensor - MQ-8
int iMQ8 = A0;
int iMQ8Raw = 0;
int iMQ8ppm = 0;
// Two points are taken from the curve in datasheet.
// With these two points, a line is formed which is
// "approximately equivalent" to the original curve.
float H2Curve[3] = {2.3, 0.93,-1.44};
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int iMQ9 = A1;
int iMQ9Raw = 0;
int iMQ9ppm = 0;
// Carbon Monoxide Gas Sensor - MQ-7
int iMQ7 = A2;
int iMQ7Raw = 0;
int iMQ7ppm = 0;
// Alcohol Gas Sensor - MQ-3
int iMQ3 = A3;
int iMQ3Raw = 0;
int iMQ3ppm = 0;
// PIR Motion
// Motion detector
const int iMotion = 7;
// Proximity
int proximity = LOW;
String Det = "";
// Adafruit RGB LCD Shield
Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield();
// These #defines make it easy to set the backlight color
#define OFF 0x0
#define RED 0x1
#define YELLOW 0x3
#define GREEN 0x2
#define TEAL 0x6
#define BLUE 0x4
#define VIOLET 0x5
#define WHITE 0x7
// Momentary Button
int yy = 0;
uint8_t momentaryButton = 0;
// DS3231 RTC Date and Time
RTC_DS3231 rtc;
String sDate;
String sTime;
// SD Card
const int chipSelect = 10;
String zzzzzz = "";
// LED Green
int iLEDGreen = 2;
// Rocker Switch - SPST (Round)
int iSS1 = 3;
// State
int iSS1State = 0;
// Software Version Information
String uid = "";
// Version
String sver = "15-17";
void loop()
{
// Adafruit RGB LCD Shield
// Clear
RGBLCDShield.clear();
// iLEDGreen LOW
digitalWrite(iLEDGreen, LOW );
// RHT Temperature and Humidity Sensor
isRHT03();
// Gas Sensors MQ
isGasSensor();
// isPIR Motion
isPIR();
// DS3231 RTC Date and Time
isRTC();
// Adafruit RGB LCD Shield
// Display
isDisplay();
// Slide Switch
// Read the state of the iSS1 value
iSS1State = digitalRead(iSS1);
// If it is the Slide Switch State is HIGH
if (iSS1State == HIGH) {
// iLEDGreen HIGH
digitalWrite(iLEDGreen, HIGH );
// MicroSD Card
isSD();
} else {
// iLEDGreen LOW
digitalWrite(iLEDGreen, LOW );
}
// Delay
delay( 1000 );
}
/* ***** Don Luc Electronics © ***** Software Version Information Project #15: Environment – MicroSD Card – Mk17 10-04 DL2110Mk04p.ino 1 x Arduino UNO - R3 1 x ProtoScrewShield 1 x RGB LCD Shield 16x2 Character Negative Display 1 x ChronoDot - Ultra-Precise Real Time Clock - v2.1 1 x MicroSD Card Breakout Board+ 1 x MicroSD 2.0 GB 1 x Rocker Switch - SPST (Round) 1 x 10K Ohm 1 x LED Green 1 x 220 Ohm 1 x Adafruit PowerBoost 500 Shield 1 x Lithium Ion Battery - 3.7v 2000mAh 4 x Pololu Carrier for MQ Gas Sensors 1 x SparkFun Hydrogen Gas Sensor - MQ-8 1 x 4.7K Ohm 1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9 1 x 22k Ohm 1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7 1 x 10K Ohm 1 x SparkFun Alcohol Gas Sensor - MQ-3 1 x 220k Ohm 1 x Temperature and Humidity Sensor - RHT03 1 x PIR Motion Sensor (JST) 1 x SparkFun Solderable Half-Breadboard 1 x Half-Breadboard 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // EEPROM Library to Read and Write EEPROM with Unique ID for Unit #include <EEPROM.h> // RHT Temperature and Humidity Sensor #include <SparkFun_RHT03.h> // Adafruit RGB LCD Shield 16x2 #include <Adafruit_RGBLCDShield.h> // Wire #include <Wire.h> // DS3231 RTC Date and Time #include <RTClib.h> // SD Card #include <SPI.h> #include <SD.h> // RHT Temperature and Humidity Sensor // RHT03 data pin Digital 5 const int RHT03_DATA_PIN = 5; // This creates a RTH03 object, which we'll use to interact with the sensor RHT03 rht; float latestHumidity; float latestTempC; // Gas Sensors MQ // Hydrogen Gas Sensor - MQ-8 int iMQ8 = A0; int iMQ8Raw = 0; int iMQ8ppm = 0; // Two points are taken from the curve in datasheet. // With these two points, a line is formed which is // "approximately equivalent" to the original curve. float H2Curve[3] = {2.3, 0.93,-1.44}; // Carbon Monoxide & Flammable Gas Sensor - MQ-9 int iMQ9 = A1; int iMQ9Raw = 0; int iMQ9ppm = 0; // Carbon Monoxide Gas Sensor - MQ-7 int iMQ7 = A2; int iMQ7Raw = 0; int iMQ7ppm = 0; // Alcohol Gas Sensor - MQ-3 int iMQ3 = A3; int iMQ3Raw = 0; int iMQ3ppm = 0; // PIR Motion // Motion detector const int iMotion = 7; // Proximity int proximity = LOW; String Det = ""; // Adafruit RGB LCD Shield Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); // These #defines make it easy to set the backlight color #define OFF 0x0 #define RED 0x1 #define YELLOW 0x3 #define GREEN 0x2 #define TEAL 0x6 #define BLUE 0x4 #define VIOLET 0x5 #define WHITE 0x7 // Momentary Button int yy = 0; uint8_t momentaryButton = 0; // DS3231 RTC Date and Time RTC_DS3231 rtc; String sDate; String sTime; // SD Card const int chipSelect = 10; String zzzzzz = ""; // LED Green int iLEDGreen = 2; // Rocker Switch - SPST (Round) int iSS1 = 3; // State int iSS1State = 0; // Software Version Information String uid = ""; // Version String sver = "15-17"; void loop() { // Adafruit RGB LCD Shield // Clear RGBLCDShield.clear(); // iLEDGreen LOW digitalWrite(iLEDGreen, LOW ); // RHT Temperature and Humidity Sensor isRHT03(); // Gas Sensors MQ isGasSensor(); // isPIR Motion isPIR(); // DS3231 RTC Date and Time isRTC(); // Adafruit RGB LCD Shield // Display isDisplay(); // Slide Switch // Read the state of the iSS1 value iSS1State = digitalRead(iSS1); // If it is the Slide Switch State is HIGH if (iSS1State == HIGH) { // iLEDGreen HIGH digitalWrite(iLEDGreen, HIGH ); // MicroSD Card isSD(); } else { // iLEDGreen LOW digitalWrite(iLEDGreen, LOW ); } // Delay delay( 1000 ); }
/* 
***** Don Luc Electronics © *****
Software Version Information
Project #15: Environment – MicroSD Card – Mk17
10-04
DL2110Mk04p.ino
1 x Arduino UNO - R3
1 x ProtoScrewShield
1 x RGB LCD Shield 16x2 Character Negative Display
1 x ChronoDot - Ultra-Precise Real Time Clock - v2.1
1 x MicroSD Card Breakout Board+
1 x MicroSD 2.0 GB
1 x Rocker Switch - SPST (Round)
1 x 10K Ohm
1 x LED Green
1 x 220 Ohm
1 x Adafruit PowerBoost 500 Shield
1 x Lithium Ion Battery - 3.7v 2000mAh
4 x Pololu Carrier for MQ Gas Sensors
1 x SparkFun Hydrogen Gas Sensor - MQ-8
1 x 4.7K Ohm
1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9
1 x 22k Ohm
1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7
1 x 10K Ohm
1 x SparkFun Alcohol Gas Sensor - MQ-3
1 x 220k Ohm
1 x Temperature and Humidity Sensor - RHT03
1 x PIR Motion Sensor (JST)
1 x SparkFun Solderable Half-Breadboard
1 x Half-Breadboard
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// EEPROM Library to Read and Write EEPROM with Unique ID for Unit
#include <EEPROM.h>
// RHT Temperature and Humidity Sensor
#include <SparkFun_RHT03.h>
// Adafruit RGB LCD Shield 16x2
#include <Adafruit_RGBLCDShield.h>
// Wire
#include <Wire.h>
// DS3231 RTC Date and Time
#include <RTClib.h>
// SD Card
#include <SPI.h>
#include <SD.h>

// RHT Temperature and Humidity Sensor
// RHT03 data pin Digital 5
const int RHT03_DATA_PIN = 5;
// This creates a RTH03 object, which we'll use to interact with the sensor
RHT03 rht;
float latestHumidity;
float latestTempC;

// Gas Sensors MQ
// Hydrogen Gas Sensor - MQ-8
int iMQ8 = A0;
int iMQ8Raw = 0;
int iMQ8ppm = 0;
// Two points are taken from the curve in datasheet.
// With these two points, a line is formed which is
// "approximately equivalent" to the original curve.
float H2Curve[3] = {2.3, 0.93,-1.44};

// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int iMQ9 = A1;
int iMQ9Raw = 0;
int iMQ9ppm = 0;

// Carbon Monoxide Gas Sensor - MQ-7
int iMQ7 = A2;
int iMQ7Raw = 0;
int iMQ7ppm = 0;

// Alcohol Gas Sensor - MQ-3
int iMQ3 = A3;
int iMQ3Raw = 0;
int iMQ3ppm = 0;

// PIR Motion
// Motion detector
const int iMotion = 7;
// Proximity
int proximity = LOW;
String Det = "";

// Adafruit RGB LCD Shield
Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield();
// These #defines make it easy to set the backlight color
#define OFF 0x0
#define RED 0x1
#define YELLOW 0x3
#define GREEN 0x2
#define TEAL 0x6
#define BLUE 0x4
#define VIOLET 0x5
#define WHITE 0x7
// Momentary Button
int yy = 0;
uint8_t momentaryButton = 0;

// DS3231 RTC Date and Time
RTC_DS3231 rtc;
String sDate;
String sTime;

// SD Card
const int chipSelect = 10;
String zzzzzz = "";

// LED Green
int iLEDGreen = 2;

// Rocker Switch - SPST (Round)
int iSS1 = 3;
// State
int iSS1State = 0;

// Software Version Information
String uid = "";
// Version
String sver = "15-17";

void loop()
{
     
  // Adafruit RGB LCD Shield
  // Clear
  RGBLCDShield.clear();

  // iLEDGreen LOW
  digitalWrite(iLEDGreen,  LOW );
  
  // RHT Temperature and Humidity Sensor
  isRHT03();

  // Gas Sensors MQ
  isGasSensor();

  // isPIR Motion
  isPIR();

  // DS3231 RTC Date and Time
  isRTC();

  // Adafruit RGB LCD Shield
  // Display
  isDisplay();

  // Slide Switch
  // Read the state of the iSS1 value
  iSS1State = digitalRead(iSS1);
  
  // If it is the Slide Switch State is HIGH
  if (iSS1State == HIGH) {

    // iLEDGreen HIGH
    digitalWrite(iLEDGreen,  HIGH );
    
    // MicroSD Card
    isSD();

  } else {

    // iLEDGreen LOW
    digitalWrite(iLEDGreen,  LOW );
  
  }

  // Delay
  delay( 1000 );
 
}

getEEPROM.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// EEPROM
// isUID EEPROM Unique ID
void isUID()
{
// Is Unit ID
uid = "";
for (int x = 0; x < 5; x++)
{
uid = uid + char(EEPROM.read(x));
}
}
// EEPROM // isUID EEPROM Unique ID void isUID() { // Is Unit ID uid = ""; for (int x = 0; x < 5; x++) { uid = uid + char(EEPROM.read(x)); } }
// EEPROM
// isUID EEPROM Unique ID
void isUID()
{
  
  // Is Unit ID
  uid = "";
  for (int x = 0; x < 5; x++)
  {
    uid = uid + char(EEPROM.read(x));
  }
  
}

getGasSensorMQ.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Gas Sensors MQ
// Gas Sensor
void isGasSensor() {
// Read in analog value from each gas sensors
// Hydrogen Gas Sensor - MQ-8
iMQ8Raw = analogRead( iMQ8 );
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
iMQ9Raw = analogRead( iMQ9 );
// Carbon Monoxide Gas Sensor - MQ-7
iMQ7Raw = analogRead( iMQ7 );
// Alcohol Gas Sensor - MQ-3
iMQ3Raw = analogRead( iMQ3 );
// Caclulate the PPM of each gas sensors
// Hydrogen Gas Sensor - MQ-8
iMQ8ppm = isMQ8( iMQ8Raw );
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
iMQ9ppm = isMQ9( iMQ9Raw );
// Carbon Monoxide Gas Sensor - MQ-7
iMQ7ppm = isMQ7( iMQ7Raw );
// Alcohol Gas Sensor - MQ-3
iMQ3ppm = isMQ3( iMQ3Raw );
}
// Hydrogen Gas Sensor - MQ-8 - PPM
int isMQ8(double rawValue) {
// RvRo
double RvRo = rawValue * (3.3 / 1023);
return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0])));
}
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int isMQ9(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double ppm = 3.027*exp(1.0698*( RvRo ));
return ppm;
}
// Carbon Monoxide Gas Sensor - MQ-7
int isMQ7(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double ppm = 3.027*exp(1.0698*( RvRo ));
return ppm;
}
// Alcohol Gas Sensor - MQ-3
int isMQ3(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double bac = RvRo * 0.21;
return bac;
}
// Gas Sensors MQ // Gas Sensor void isGasSensor() { // Read in analog value from each gas sensors // Hydrogen Gas Sensor - MQ-8 iMQ8Raw = analogRead( iMQ8 ); // Carbon Monoxide & Flammable Gas Sensor - MQ-9 iMQ9Raw = analogRead( iMQ9 ); // Carbon Monoxide Gas Sensor - MQ-7 iMQ7Raw = analogRead( iMQ7 ); // Alcohol Gas Sensor - MQ-3 iMQ3Raw = analogRead( iMQ3 ); // Caclulate the PPM of each gas sensors // Hydrogen Gas Sensor - MQ-8 iMQ8ppm = isMQ8( iMQ8Raw ); // Carbon Monoxide & Flammable Gas Sensor - MQ-9 iMQ9ppm = isMQ9( iMQ9Raw ); // Carbon Monoxide Gas Sensor - MQ-7 iMQ7ppm = isMQ7( iMQ7Raw ); // Alcohol Gas Sensor - MQ-3 iMQ3ppm = isMQ3( iMQ3Raw ); } // Hydrogen Gas Sensor - MQ-8 - PPM int isMQ8(double rawValue) { // RvRo double RvRo = rawValue * (3.3 / 1023); return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0]))); } // Carbon Monoxide & Flammable Gas Sensor - MQ-9 int isMQ9(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double ppm = 3.027*exp(1.0698*( RvRo )); return ppm; } // Carbon Monoxide Gas Sensor - MQ-7 int isMQ7(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double ppm = 3.027*exp(1.0698*( RvRo )); return ppm; } // Alcohol Gas Sensor - MQ-3 int isMQ3(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double bac = RvRo * 0.21; return bac; }
// Gas Sensors MQ
// Gas Sensor
void isGasSensor() {

  // Read in analog value from each gas sensors
  
  // Hydrogen Gas Sensor - MQ-8
  iMQ8Raw = analogRead( iMQ8 );

  // Carbon Monoxide & Flammable Gas Sensor - MQ-9
  iMQ9Raw = analogRead( iMQ9 );  

  // Carbon Monoxide Gas Sensor - MQ-7
  iMQ7Raw = analogRead( iMQ7 );

  // Alcohol Gas Sensor - MQ-3
  iMQ3Raw = analogRead( iMQ3 );
  
  // Caclulate the PPM of each gas sensors

  // Hydrogen Gas Sensor - MQ-8
  iMQ8ppm = isMQ8( iMQ8Raw );

  // Carbon Monoxide & Flammable Gas Sensor - MQ-9
  iMQ9ppm = isMQ9( iMQ9Raw ); 

  // Carbon Monoxide Gas Sensor - MQ-7
  iMQ7ppm = isMQ7( iMQ7Raw ); 

  // Alcohol Gas Sensor - MQ-3
  iMQ3ppm = isMQ3( iMQ3Raw ); 

}
// Hydrogen Gas Sensor - MQ-8 - PPM
int isMQ8(double rawValue) {

  // RvRo
  double RvRo = rawValue * (3.3 / 1023);

  return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0])));
  
}
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int isMQ9(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double ppm = 3.027*exp(1.0698*( RvRo ));
  return ppm;
  
}
// Carbon Monoxide Gas Sensor - MQ-7
int isMQ7(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double ppm = 3.027*exp(1.0698*( RvRo ));
  return ppm;
  
}
// Alcohol Gas Sensor - MQ-3
int isMQ3(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double bac = RvRo * 0.21;
  return bac;
  
}

getPIR.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// PIR Motion
// Setup PIR
void setupPIR() {
// Setup PIR Montion
pinMode(iMotion, INPUT_PULLUP);
}
// isPIR Motion
void isPIR() {
// Proximity
proximity = digitalRead(iMotion);
if (proximity == LOW)
{
// PIR Motion Sensor's LOW, Motion is detected
Det = "Motion Yes";
}
else
{
// PIR Motion Sensor's HIGH
Det = "No";
}
}
// PIR Motion // Setup PIR void setupPIR() { // Setup PIR Montion pinMode(iMotion, INPUT_PULLUP); } // isPIR Motion void isPIR() { // Proximity proximity = digitalRead(iMotion); if (proximity == LOW) { // PIR Motion Sensor's LOW, Motion is detected Det = "Motion Yes"; } else { // PIR Motion Sensor's HIGH Det = "No"; } }
// PIR Motion
// Setup PIR
void setupPIR() {

  // Setup PIR Montion
  pinMode(iMotion, INPUT_PULLUP);
  
}
// isPIR Motion
void isPIR() {

  // Proximity
  proximity = digitalRead(iMotion);
  if (proximity == LOW) 
  {

    // PIR Motion Sensor's LOW, Motion is detected
    Det = "Motion Yes";

  }
  else
  {

    // PIR Motion Sensor's HIGH
    Det = "No";
    
  }
  
}

getRGBLCDShield.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Adafruit RGB LCD Shield
// Setup RGB LCD Shield
void isSetupRGBLCDShield() {
// Adafruit RGB LCD Shield
// Set up the LCD's number of columns and rows:
RGBLCDShield.begin(16, 2);
// Set the cursor to column 0, line 0
RGBLCDShield.setBacklight(RED);
// Don luc
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print("Don Luc");
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Electronics
RGBLCDShield.print("Electronics");
// Delay
delay(5000);
// Clear
RGBLCDShield.clear();
// Set the cursor to column 0, line 0
RGBLCDShield.setBacklight(TEAL);
// Version
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print("Version: " + sver);
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Unit ID
RGBLCDShield.print("Unit ID: " + uid);
// Delay
delay(5000);
// Clear
RGBLCDShield.clear();
}
// isDisplay
void isDisplay() {
// Momentary Button
momentaryButton = RGBLCDShield.readButtons();
switch ( yy ) {
case 1:
// RHT Temperature and Humidity Sensor
// Set the cursor to column 0, line 0
RGBLCDShield.setCursor(0,0);
// Temperature C
RGBLCDShield.print( "Temp C: " );
RGBLCDShield.print( latestTempC );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Humidity
RGBLCDShield.print( "Humidity: " );
RGBLCDShield.print( latestHumidity );
break;
case 2:
// PIR Motion Sensor
// Set the cursor to column 0, line 0
// PIR Motion Sensor
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print( "PIR Motion" );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Det
RGBLCDShield.print( Det );
break;
case 3:
// Gas Sensors 1
// Set the cursor to column 0, line 0
RGBLCDShield.setCursor(0,0);
// Hydrogen Gas Sensor - MQ-8
RGBLCDShield.print( "MQ-8: " );
RGBLCDShield.print( iMQ8ppm );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
RGBLCDShield.print( "MQ-9: " );
RGBLCDShield.print( iMQ9ppm );
break;
case 4:
// Gas Sensors 2
// Set the cursor to column 0, line 0
RGBLCDShield.setCursor(0,0);
// Carbon Monoxide Gas Sensor - MQ-7
RGBLCDShield.print( "MQ-7: " );
RGBLCDShield.print( iMQ7ppm );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Alcohol Gas Sensor - MQ-3
RGBLCDShield.print( "MQ-3: " );
RGBLCDShield.print( iMQ3ppm );
break;
case 5:
// DS3231 RTC Date and Time
// Date and Time
DateTime now = rtc.now();
// Set the cursor to column 0, line 0
// Date
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print( sDate );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Time
RGBLCDShield.print( sTime );
break;
default:
// Don luc Electronics
yy = 5;
RGBLCDShield.setBacklight(RED);
// Set the cursor to column 0, line 0
// Don luc
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print("Don Luc");
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Electronics
RGBLCDShield.print("Electronics");
}
if ( momentaryButton ) {
if ( momentaryButton & BUTTON_UP ) {
yy = 1;
// RHT Temperature and Humidity Sensor
RGBLCDShield.setBacklight(GREEN);
}
if ( momentaryButton & BUTTON_DOWN ) {
yy = 2;
// PIR Motion Sensor
RGBLCDShield.setBacklight(VIOLET);
}
if ( momentaryButton & BUTTON_LEFT ) {
yy = 3;
// Gas Sensors 1
RGBLCDShield.setBacklight(TEAL);
}
if ( momentaryButton & BUTTON_RIGHT ) {
yy = 4;
// Gas Sensors 2
RGBLCDShield.setBacklight(YELLOW);
}
if ( momentaryButton & BUTTON_SELECT ) {
yy = 5;
// DS3231 RTC Date and Time
RGBLCDShield.setBacklight(WHITE);
}
}
}
// Adafruit RGB LCD Shield // Setup RGB LCD Shield void isSetupRGBLCDShield() { // Adafruit RGB LCD Shield // Set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); // Set the cursor to column 0, line 0 RGBLCDShield.setBacklight(RED); // Don luc RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Electronics RGBLCDShield.print("Electronics"); // Delay delay(5000); // Clear RGBLCDShield.clear(); // Set the cursor to column 0, line 0 RGBLCDShield.setBacklight(TEAL); // Version RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Version: " + sver); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Unit ID RGBLCDShield.print("Unit ID: " + uid); // Delay delay(5000); // Clear RGBLCDShield.clear(); } // isDisplay void isDisplay() { // Momentary Button momentaryButton = RGBLCDShield.readButtons(); switch ( yy ) { case 1: // RHT Temperature and Humidity Sensor // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); // Temperature C RGBLCDShield.print( "Temp C: " ); RGBLCDShield.print( latestTempC ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Humidity RGBLCDShield.print( "Humidity: " ); RGBLCDShield.print( latestHumidity ); break; case 2: // PIR Motion Sensor // Set the cursor to column 0, line 0 // PIR Motion Sensor RGBLCDShield.setCursor(0,0); RGBLCDShield.print( "PIR Motion" ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Det RGBLCDShield.print( Det ); break; case 3: // Gas Sensors 1 // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); // Hydrogen Gas Sensor - MQ-8 RGBLCDShield.print( "MQ-8: " ); RGBLCDShield.print( iMQ8ppm ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Carbon Monoxide & Flammable Gas Sensor - MQ-9 RGBLCDShield.print( "MQ-9: " ); RGBLCDShield.print( iMQ9ppm ); break; case 4: // Gas Sensors 2 // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); // Carbon Monoxide Gas Sensor - MQ-7 RGBLCDShield.print( "MQ-7: " ); RGBLCDShield.print( iMQ7ppm ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Alcohol Gas Sensor - MQ-3 RGBLCDShield.print( "MQ-3: " ); RGBLCDShield.print( iMQ3ppm ); break; case 5: // DS3231 RTC Date and Time // Date and Time DateTime now = rtc.now(); // Set the cursor to column 0, line 0 // Date RGBLCDShield.setCursor(0,0); RGBLCDShield.print( sDate ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Time RGBLCDShield.print( sTime ); break; default: // Don luc Electronics yy = 5; RGBLCDShield.setBacklight(RED); // Set the cursor to column 0, line 0 // Don luc RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Electronics RGBLCDShield.print("Electronics"); } if ( momentaryButton ) { if ( momentaryButton & BUTTON_UP ) { yy = 1; // RHT Temperature and Humidity Sensor RGBLCDShield.setBacklight(GREEN); } if ( momentaryButton & BUTTON_DOWN ) { yy = 2; // PIR Motion Sensor RGBLCDShield.setBacklight(VIOLET); } if ( momentaryButton & BUTTON_LEFT ) { yy = 3; // Gas Sensors 1 RGBLCDShield.setBacklight(TEAL); } if ( momentaryButton & BUTTON_RIGHT ) { yy = 4; // Gas Sensors 2 RGBLCDShield.setBacklight(YELLOW); } if ( momentaryButton & BUTTON_SELECT ) { yy = 5; // DS3231 RTC Date and Time RGBLCDShield.setBacklight(WHITE); } } }
// Adafruit RGB LCD Shield
// Setup RGB LCD Shield
void isSetupRGBLCDShield() {

  // Adafruit RGB LCD Shield
  // Set up the LCD's number of columns and rows: 
  RGBLCDShield.begin(16, 2);

  // Set the cursor to column 0, line 0
  RGBLCDShield.setBacklight(RED);
  // Don luc 
  RGBLCDShield.setCursor(0,0);
  RGBLCDShield.print("Don Luc");
  // Set the cursor to column 0, line 1
  RGBLCDShield.setCursor(0, 1);
  // Electronics
  RGBLCDShield.print("Electronics");
  // Delay
  delay(5000);
  // Clear
  RGBLCDShield.clear();

  // Set the cursor to column 0, line 0
  RGBLCDShield.setBacklight(TEAL);
  // Version 
  RGBLCDShield.setCursor(0,0);
  RGBLCDShield.print("Version: " + sver);
  // Set the cursor to column 0, line 1
  RGBLCDShield.setCursor(0, 1);
  // Unit ID
  RGBLCDShield.print("Unit ID: " + uid);
  // Delay
  delay(5000);
  // Clear
  RGBLCDShield.clear();
  
}
// isDisplay
void isDisplay() {

  // Momentary Button
  momentaryButton = RGBLCDShield.readButtons();

  switch ( yy ) {
    case 1:
    
      // RHT Temperature and Humidity Sensor
      // Set the cursor to column 0, line 0
      RGBLCDShield.setCursor(0,0);
      // Temperature C
      RGBLCDShield.print( "Temp C: " );
      RGBLCDShield.print( latestTempC );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Humidity
      RGBLCDShield.print( "Humidity: " );
      RGBLCDShield.print( latestHumidity );

      break;
    case 2:
    
      // PIR Motion Sensor
      // Set the cursor to column 0, line 0
      // PIR Motion Sensor
      RGBLCDShield.setCursor(0,0);
      RGBLCDShield.print( "PIR Motion" );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Det
      RGBLCDShield.print( Det );
      
      break;
    case 3:

      // Gas Sensors 1
      // Set the cursor to column 0, line 0
      RGBLCDShield.setCursor(0,0);
      // Hydrogen Gas Sensor - MQ-8
      RGBLCDShield.print( "MQ-8: " );
      RGBLCDShield.print( iMQ8ppm );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Carbon Monoxide & Flammable Gas Sensor - MQ-9
      RGBLCDShield.print( "MQ-9: " );
      RGBLCDShield.print( iMQ9ppm );
      
      break;
    case 4:

      // Gas Sensors 2
      // Set the cursor to column 0, line 0
      RGBLCDShield.setCursor(0,0);
      // Carbon Monoxide Gas Sensor - MQ-7
      RGBLCDShield.print( "MQ-7: " );
      RGBLCDShield.print( iMQ7ppm );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Alcohol Gas Sensor - MQ-3
      RGBLCDShield.print( "MQ-3: " );
      RGBLCDShield.print( iMQ3ppm );
      
      break;
    case 5:

      // DS3231 RTC Date and Time
      // Date and Time
      DateTime now = rtc.now();
      // Set the cursor to column 0, line 0
      // Date 
      RGBLCDShield.setCursor(0,0);
      RGBLCDShield.print( sDate );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Time
      RGBLCDShield.print( sTime );
      
      break;
    default:

      // Don luc Electronics
      yy = 5;
      RGBLCDShield.setBacklight(RED);
      // Set the cursor to column 0, line 0
      // Don luc 
      RGBLCDShield.setCursor(0,0);
      RGBLCDShield.print("Don Luc");
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Electronics
      RGBLCDShield.print("Electronics");

   }
   
   if ( momentaryButton ) {
    
    if ( momentaryButton & BUTTON_UP ) {
      
      yy = 1;
      // RHT Temperature and Humidity Sensor
      RGBLCDShield.setBacklight(GREEN);
      
    }
    
    if ( momentaryButton & BUTTON_DOWN ) {
      
      yy = 2;
      // PIR Motion Sensor
      RGBLCDShield.setBacklight(VIOLET);
      
    }
    
    if ( momentaryButton & BUTTON_LEFT ) {
      
      yy = 3;
      // Gas Sensors 1
      RGBLCDShield.setBacklight(TEAL);
      
    }
    
    if ( momentaryButton & BUTTON_RIGHT ) {

      yy = 4;
      // Gas Sensors 2
      RGBLCDShield.setBacklight(YELLOW);
    }
    
    if ( momentaryButton & BUTTON_SELECT ) {

      yy = 5;
      // DS3231 RTC Date and Time
      RGBLCDShield.setBacklight(WHITE);
   
    }
    
  }
  
}

getRHT.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// RHT Temperature and Humidity Sensor
// setup RHT Temperature and Humidity Sensor
void setupRTH03() {
// RHT Temperature and Humidity Sensor
// Call rht.begin() to initialize the sensor and our data pin
rht.begin(RHT03_DATA_PIN);
}
// RHT Temperature and Humidity Sensor
void isRHT03(){
// Call rht.update() to get new humidity and temperature values from the sensor.
int updateRet = rht.update();
// The humidity(), tempC(), and tempF() functions can be called -- after
// a successful update() -- to get the last humidity and temperature value
latestHumidity = rht.humidity();
latestTempC = rht.tempC();
}
// RHT Temperature and Humidity Sensor // setup RHT Temperature and Humidity Sensor void setupRTH03() { // RHT Temperature and Humidity Sensor // Call rht.begin() to initialize the sensor and our data pin rht.begin(RHT03_DATA_PIN); } // RHT Temperature and Humidity Sensor void isRHT03(){ // Call rht.update() to get new humidity and temperature values from the sensor. int updateRet = rht.update(); // The humidity(), tempC(), and tempF() functions can be called -- after // a successful update() -- to get the last humidity and temperature value latestHumidity = rht.humidity(); latestTempC = rht.tempC(); }
// RHT Temperature and Humidity Sensor
// setup RHT Temperature and Humidity Sensor
void setupRTH03() {

  // RHT Temperature and Humidity Sensor
  // Call rht.begin() to initialize the sensor and our data pin
  rht.begin(RHT03_DATA_PIN);
  
}
// RHT Temperature and Humidity Sensor
void isRHT03(){

  // Call rht.update() to get new humidity and temperature values from the sensor.
  int updateRet = rht.update();

  // The humidity(), tempC(), and tempF() functions can be called -- after 
  // a successful update() -- to get the last humidity and temperature value 
  latestHumidity = rht.humidity();
  latestTempC = rht.tempC();

}

getRTC.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// DS3231 RTC Date and Time
// Setup DS3231 RTC
void isSetupRTC() {
if (! rtc.begin()) {
while (1);
}
if (rtc.lostPower()) {
// Following line sets the RTC to the date & time this sketch was compiled
rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
// This line sets the RTC with an explicit date & time, for example to set
// January 21, 2014 at 3am you would call:
// rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
}
}
// DS3231 RTC Date and Time
void isRTC(){
// Date and Time
sDate = "";
sTime = "";
// Date Time
DateTime now = rtc.now();
// sData
sDate += String(now.year(), DEC);
sDate += "/";
sDate += String(now.month(), DEC);
sDate += "/";
sDate += String(now.day(), DEC);
// sTime
sTime += String(now.hour(), DEC);
sTime += ":";
sTime += String(now.minute(), DEC);
sTime += ":";
sTime += String(now.second(), DEC);
}
// DS3231 RTC Date and Time // Setup DS3231 RTC void isSetupRTC() { if (! rtc.begin()) { while (1); } if (rtc.lostPower()) { // Following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0)); } } // DS3231 RTC Date and Time void isRTC(){ // Date and Time sDate = ""; sTime = ""; // Date Time DateTime now = rtc.now(); // sData sDate += String(now.year(), DEC); sDate += "/"; sDate += String(now.month(), DEC); sDate += "/"; sDate += String(now.day(), DEC); // sTime sTime += String(now.hour(), DEC); sTime += ":"; sTime += String(now.minute(), DEC); sTime += ":"; sTime += String(now.second(), DEC); }
// DS3231 RTC Date and Time
// Setup DS3231 RTC
void isSetupRTC() {

  if (! rtc.begin()) {
    while (1);
  }

  if (rtc.lostPower()) {
    // Following line sets the RTC to the date & time this sketch was compiled
    rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
    // This line sets the RTC with an explicit date & time, for example to set
    // January 21, 2014 at 3am you would call:
    // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
  }
  
}
// DS3231 RTC Date and Time
void isRTC(){
 
    // Date and Time
    sDate = "";
    sTime = "";
    // Date Time
    DateTime now = rtc.now();

    // sData
    sDate += String(now.year(), DEC);
    sDate += "/";
    sDate += String(now.month(), DEC);
    sDate += "/";
    sDate += String(now.day(), DEC);
  
    // sTime
    sTime += String(now.hour(), DEC);
    sTime += ":";
    sTime += String(now.minute(), DEC);
    sTime += ":";
    sTime += String(now.second(), DEC);
    
}

getSD.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// MicroSD Card
// MicroSD Setup
void setupSD() {
// MicroSD Card
if (!SD.begin(chipSelect)) {
while (true);
}
}
// MicroSD Card
void isSD() {
zzzzzz = "";
// Don Luc Electronics © (1983-2021)
// Arduino Data
// EEPROM Unique ID
// Version
// Date
// Time
// Temperature Celsius
// Humidity
// Hydrogen Gas Sensor - MQ-8
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
// Carbon Monoxide Gas Sensor - MQ-7
// Alcohol Gas Sensor - MQ-3
// PIR Motion
// EEPROM Unique ID|Version|Date|Time|Temperature Celsius|Humidity|MQ-8|MQ-9|MQ-7|MQ-3|PIR Motion|\r
zzzzzz = uid + "|" + sver + "|" + sDate + "|" + sTime + "|" + latestTempC + "|" + latestHumidity + "|"
+ iMQ8ppm + "|" + iMQ9ppm + "|" + iMQ7ppm + "|" +
iMQ3ppm + "|" + Det + "|";
// Open the file. Note that only one file can be open at a time,
// so you have to close this one before opening another.
File dataFile = SD.open("arddata.txt", FILE_WRITE);
// If the file is available, write to it:
if ( dataFile ) {
dataFile.println( zzzzzz );
dataFile.close();
}
}
// MicroSD Card // MicroSD Setup void setupSD() { // MicroSD Card if (!SD.begin(chipSelect)) { while (true); } } // MicroSD Card void isSD() { zzzzzz = ""; // Don Luc Electronics © (1983-2021) // Arduino Data // EEPROM Unique ID // Version // Date // Time // Temperature Celsius // Humidity // Hydrogen Gas Sensor - MQ-8 // Carbon Monoxide & Flammable Gas Sensor - MQ-9 // Carbon Monoxide Gas Sensor - MQ-7 // Alcohol Gas Sensor - MQ-3 // PIR Motion // EEPROM Unique ID|Version|Date|Time|Temperature Celsius|Humidity|MQ-8|MQ-9|MQ-7|MQ-3|PIR Motion|\r zzzzzz = uid + "|" + sver + "|" + sDate + "|" + sTime + "|" + latestTempC + "|" + latestHumidity + "|" + iMQ8ppm + "|" + iMQ9ppm + "|" + iMQ7ppm + "|" + iMQ3ppm + "|" + Det + "|"; // Open the file. Note that only one file can be open at a time, // so you have to close this one before opening another. File dataFile = SD.open("arddata.txt", FILE_WRITE); // If the file is available, write to it: if ( dataFile ) { dataFile.println( zzzzzz ); dataFile.close(); } }
// MicroSD Card
// MicroSD Setup
void setupSD() {

  // MicroSD Card
  if (!SD.begin(chipSelect)) {

     while (true);

  }
 
}
// MicroSD Card
void isSD() {

  zzzzzz = "";

  // Don Luc Electronics © (1983-2021)
  // Arduino Data
  // EEPROM Unique ID
  // Version
  // Date
  // Time
  // Temperature Celsius
  // Humidity
  // Hydrogen Gas Sensor - MQ-8
  // Carbon Monoxide & Flammable Gas Sensor - MQ-9
  // Carbon Monoxide Gas Sensor - MQ-7
  // Alcohol Gas Sensor - MQ-3
  // PIR Motion
  // EEPROM Unique ID|Version|Date|Time|Temperature Celsius|Humidity|MQ-8|MQ-9|MQ-7|MQ-3|PIR Motion|\r
  zzzzzz = uid + "|" + sver + "|" + sDate + "|" + sTime + "|" + latestTempC + "|" + latestHumidity + "|"
  + iMQ8ppm + "|" + iMQ9ppm + "|" + iMQ7ppm + "|" + 
  iMQ3ppm + "|" + Det + "|";

  
  // Open the file. Note that only one file can be open at a time,
  // so you have to close this one before opening another.

  File dataFile = SD.open("arddata.txt", FILE_WRITE);

  // If the file is available, write to it:
  if ( dataFile ) {

    dataFile.println( zzzzzz );

    dataFile.close();

  }
  
}

setup.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Setup
void setup()
{
// EEPROM Unique ID
isUID();
// RHT Temperature and Humidity Sensor
// Setup RTH03 Temperature and Humidity Sensor
setupRTH03();
// PIR Motion
// Setup PIR
setupPIR();
// Setup DS3231 RTC
isSetupRTC();
//MicroSD Card
setupSD();
// Initialize the LED Green
pinMode(iLEDGreen, OUTPUT);
// iLEDGreen LOW
digitalWrite(iLEDGreen, LOW );
// Slide Switch
pinMode(iSS1, INPUT);
// Adafruit RGB LCD Shield
isSetupRGBLCDShield();
}
// Setup void setup() { // EEPROM Unique ID isUID(); // RHT Temperature and Humidity Sensor // Setup RTH03 Temperature and Humidity Sensor setupRTH03(); // PIR Motion // Setup PIR setupPIR(); // Setup DS3231 RTC isSetupRTC(); //MicroSD Card setupSD(); // Initialize the LED Green pinMode(iLEDGreen, OUTPUT); // iLEDGreen LOW digitalWrite(iLEDGreen, LOW ); // Slide Switch pinMode(iSS1, INPUT); // Adafruit RGB LCD Shield isSetupRGBLCDShield(); }
// Setup
void setup()
{
    
  // EEPROM Unique ID
  isUID();
  
  // RHT Temperature and Humidity Sensor
  // Setup RTH03 Temperature and Humidity Sensor
  setupRTH03();

  // PIR Motion
  // Setup PIR
  setupPIR();

  // Setup DS3231 RTC
  isSetupRTC();

  //MicroSD Card
  setupSD();

  // Initialize the LED Green
  pinMode(iLEDGreen, OUTPUT);
  // iLEDGreen LOW
  digitalWrite(iLEDGreen,  LOW );

  // Slide Switch
  pinMode(iSS1, INPUT);

  // Adafruit RGB LCD Shield
  isSetupRGBLCDShield();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Research & Development (R & D)
  • Desktop Applications (Windows, OSX, Linux, Multi-OS, Multi-Tier, etc…)
  • Mobile Applications (Android, iOS, Blackberry, Windows Mobile, Windows CE, etc…)
  • Web Applications (LAMP, Scripting, Java, ASP, ASP.NET, RoR, Wakanda, etc…)
  • Social Media Programming & Integration (Facebook, Twitter, YouTube, Pinterest, etc…)
  • Content Management Systems (WordPress, Drupal, Joomla, Moodle, etc…)
  • Bulletin Boards (phpBB, SMF, Vanilla, jobberBase, etc…)
  • eCommerce (WooCommerce, OSCommerce, ZenCart, PayPal Shopping Cart, etc…)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics
  • DOS, Windows, OSX, Linux, iOS, Android, Multi-OS
  • Linux-Apache-PHP-MySQL

Follow Us

J. Luc Paquin – Curriculum Vitae – 2021 English & Español
https://www.jlpconsultants.com/luc/

Web: https://www.donluc.com/
Web: https://www.jlpconsultants.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #15: Environment – ChronoDot – Mk16

——

#DonLucElectronics #DonLuc #Environment #MQ #PIR #RHT03 #RTC #ArduinoUNO #Arduino #AdafruitPowerBoost #Project #Programming #Electronics #Microcontrollers #Consultant #VideoBlog

——

ChronoDot

——

ChronoDot

——

ChronoDot

——

ChronoDot

——

ChronoDot – Ultra-Precise Real Time Clock – v2.1

The ChronoDot RTC is an extremely accurate real time clock module, based on the DS3231 temperature compensated RTC. It includes a CR1632 battery, which should last at least 8 years if the I2C interface is only used while the device has 5V power available. No external crystal or tuning capacitors are required.

The top side of the Chronodot now features a battery holder for 16mm 3V lithium coin cells. It pairs particularly well with CR1632 batteries. The DS3231 has an internal crystal and a switched bank of tuning capacitors. The temperature of the crystal is continously monitored, and the capacitors are adjusted to maintain a stable frequency. Other RTC solutions may drift minutes per month, especially in extreme temperature ranges…the ChronoDot will drift less than a minute per year. This makes the ChronoDot very well suited for time critical applications that cannot be regularly synchronized to an external clock.

DL2110Mk03

1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x RGB LCD Shield 16×2 Character Negative Display
1 x ChronoDot – Ultra-Precise Real Time Clock – v2.1
1 x Adafruit PowerBoost 500 Shield
1 x Lithium Ion Battery – 3.7v 2000mAh
4 x Pololu Carrier for MQ Gas Sensors
1 x SparkFun Hydrogen Gas Sensor – MQ-8
1 x 4.7K Ohm
1 x Pololu Carbon Monoxide & Flammable Gas Sensor – MQ-9
1 x 22k Ohm
1 x SparkFun Carbon Monoxide Gas Sensor – MQ-7
1 x 10K Ohm
1 x SparkFun Alcohol Gas Sensor – MQ-3
1 x 220k Ohm
1 x Temperature and Humidity Sensor- RHT03
1 x PIR Motion Sensor (JST)
1 x SparkFun Solderable Half-Breadboard
1 x Half-Breadboard
1 x SparkFun Cerberus USB Cable

Arduino UNO – R3

RHT – Digital 5
PIR – Digital 7
MQ8 – Analog 0
MQ9 – Analog 1
MQ7 – Analog 2
MQ3 – Analog 3
SDA – Analog 4
SCL – Analog 5
VIN – +5V
GND – GND

——

DL2110Mk03p.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
/*
***** Don Luc Electronics © *****
Software Version Information
Project #15: Environment – ChronoDot – Mk16
10-03
DL2110Mk03p.ino
1 x Arduino UNO - R3
1 x ProtoScrewShield
1 x RGB LCD Shield 16x2 Character Negative Display
1 x ChronoDot - Ultra-Precise Real Time Clock - v2.1
1 x Adafruit PowerBoost 500 Shield
1 x Lithium Ion Battery - 3.7v 2000mAh
4 x Pololu Carrier for MQ Gas Sensors
1 x SparkFun Hydrogen Gas Sensor - MQ-8
1 x 4.7K Ohm
1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9
1 x 22k Ohm
1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7
1 x 10K Ohm
1 x SparkFun Alcohol Gas Sensor - MQ-3
1 x 220k Ohm
1 x Temperature and Humidity Sensor - RHT03
1 x PIR Motion Sensor (JST)
1 x SparkFun Solderable Half-Breadboard
1 x Half-Breadboard
1 x SparkFun Cerberus USB Cable
*/
// Include the Library Code
// EEPROM Library to Read and Write EEPROM with Unique ID for Unit
#include <EEPROM.h>
// RHT Temperature and Humidity Sensor
#include <SparkFun_RHT03.h>
// Adafruit RGB LCD Shield 16x2
#include <Adafruit_RGBLCDShield.h>
// Wire
#include <Wire.h>
// DS3231 RTC Date and Time
#include <RTClib.h>
// RHT Temperature and Humidity Sensor
// RHT03 data pin Digital 5
const int RHT03_DATA_PIN = 5;
// This creates a RTH03 object, which we'll use to interact with the sensor
RHT03 rht;
float latestHumidity;
float latestTempC;
// Gas Sensors MQ
// Hydrogen Gas Sensor - MQ-8
int iMQ8 = A0;
int iMQ8Raw = 0;
int iMQ8ppm = 0;
// Two points are taken from the curve in datasheet.
// With these two points, a line is formed which is
// "approximately equivalent" to the original curve.
float H2Curve[3] = {2.3, 0.93,-1.44};
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int iMQ9 = A1;
int iMQ9Raw = 0;
int iMQ9ppm = 0;
// Carbon Monoxide Gas Sensor - MQ-7
int iMQ7 = A2;
int iMQ7Raw = 0;
int iMQ7ppm = 0;
// Alcohol Gas Sensor - MQ-3
int iMQ3 = A3;
int iMQ3Raw = 0;
int iMQ3ppm = 0;
// PIR Motion
// Motion detector
const int iMotion = 7;
// Proximity
int proximity = LOW;
String Det = "";
// Adafruit RGB LCD Shield
Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield();
// These #defines make it easy to set the backlight color
#define OFF 0x0
#define RED 0x1
#define YELLOW 0x3
#define GREEN 0x2
#define TEAL 0x6
#define BLUE 0x4
#define VIOLET 0x5
#define WHITE 0x7
// Momentary Button
int yy = 0;
uint8_t momentaryButton = 0;
// DS3231 RTC Date and Time
RTC_DS3231 rtc;
String sDate;
String sTime;
// Software Version Information
String uid = "";
// Version
String sver = "15-16";
void loop()
{
// Adafruit RGB LCD Shield
// Clear
RGBLCDShield.clear();
// RHT Temperature and Humidity Sensor
isRHT03();
// Gas Sensors MQ
isGasSensor();
// isPIR Motion
isPIR();
// DS3231 RTC Date and Time
isRTC();
// Adafruit RGB LCD Shield
// Display
isDisplay();
// Delay
// Turn the LED on HIGH is the voltage level
digitalWrite(LED_BUILTIN, HIGH);
// Wait for a 0.5 second
delay( 500 );
// Turn the LED off by making the voltage LOW
digitalWrite(LED_BUILTIN, LOW);
// Wait for a 0.5 second
delay( 500 );
}
/* ***** Don Luc Electronics © ***** Software Version Information Project #15: Environment – ChronoDot – Mk16 10-03 DL2110Mk03p.ino 1 x Arduino UNO - R3 1 x ProtoScrewShield 1 x RGB LCD Shield 16x2 Character Negative Display 1 x ChronoDot - Ultra-Precise Real Time Clock - v2.1 1 x Adafruit PowerBoost 500 Shield 1 x Lithium Ion Battery - 3.7v 2000mAh 4 x Pololu Carrier for MQ Gas Sensors 1 x SparkFun Hydrogen Gas Sensor - MQ-8 1 x 4.7K Ohm 1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9 1 x 22k Ohm 1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7 1 x 10K Ohm 1 x SparkFun Alcohol Gas Sensor - MQ-3 1 x 220k Ohm 1 x Temperature and Humidity Sensor - RHT03 1 x PIR Motion Sensor (JST) 1 x SparkFun Solderable Half-Breadboard 1 x Half-Breadboard 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // EEPROM Library to Read and Write EEPROM with Unique ID for Unit #include <EEPROM.h> // RHT Temperature and Humidity Sensor #include <SparkFun_RHT03.h> // Adafruit RGB LCD Shield 16x2 #include <Adafruit_RGBLCDShield.h> // Wire #include <Wire.h> // DS3231 RTC Date and Time #include <RTClib.h> // RHT Temperature and Humidity Sensor // RHT03 data pin Digital 5 const int RHT03_DATA_PIN = 5; // This creates a RTH03 object, which we'll use to interact with the sensor RHT03 rht; float latestHumidity; float latestTempC; // Gas Sensors MQ // Hydrogen Gas Sensor - MQ-8 int iMQ8 = A0; int iMQ8Raw = 0; int iMQ8ppm = 0; // Two points are taken from the curve in datasheet. // With these two points, a line is formed which is // "approximately equivalent" to the original curve. float H2Curve[3] = {2.3, 0.93,-1.44}; // Carbon Monoxide & Flammable Gas Sensor - MQ-9 int iMQ9 = A1; int iMQ9Raw = 0; int iMQ9ppm = 0; // Carbon Monoxide Gas Sensor - MQ-7 int iMQ7 = A2; int iMQ7Raw = 0; int iMQ7ppm = 0; // Alcohol Gas Sensor - MQ-3 int iMQ3 = A3; int iMQ3Raw = 0; int iMQ3ppm = 0; // PIR Motion // Motion detector const int iMotion = 7; // Proximity int proximity = LOW; String Det = ""; // Adafruit RGB LCD Shield Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); // These #defines make it easy to set the backlight color #define OFF 0x0 #define RED 0x1 #define YELLOW 0x3 #define GREEN 0x2 #define TEAL 0x6 #define BLUE 0x4 #define VIOLET 0x5 #define WHITE 0x7 // Momentary Button int yy = 0; uint8_t momentaryButton = 0; // DS3231 RTC Date and Time RTC_DS3231 rtc; String sDate; String sTime; // Software Version Information String uid = ""; // Version String sver = "15-16"; void loop() { // Adafruit RGB LCD Shield // Clear RGBLCDShield.clear(); // RHT Temperature and Humidity Sensor isRHT03(); // Gas Sensors MQ isGasSensor(); // isPIR Motion isPIR(); // DS3231 RTC Date and Time isRTC(); // Adafruit RGB LCD Shield // Display isDisplay(); // Delay // Turn the LED on HIGH is the voltage level digitalWrite(LED_BUILTIN, HIGH); // Wait for a 0.5 second delay( 500 ); // Turn the LED off by making the voltage LOW digitalWrite(LED_BUILTIN, LOW); // Wait for a 0.5 second delay( 500 ); }
/* 
***** Don Luc Electronics © *****
Software Version Information
Project #15: Environment – ChronoDot – Mk16
10-03
DL2110Mk03p.ino
1 x Arduino UNO - R3
1 x ProtoScrewShield
1 x RGB LCD Shield 16x2 Character Negative Display
1 x ChronoDot - Ultra-Precise Real Time Clock - v2.1
1 x Adafruit PowerBoost 500 Shield
1 x Lithium Ion Battery - 3.7v 2000mAh
4 x Pololu Carrier for MQ Gas Sensors
1 x SparkFun Hydrogen Gas Sensor - MQ-8
1 x 4.7K Ohm
1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9
1 x 22k Ohm
1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7
1 x 10K Ohm
1 x SparkFun Alcohol Gas Sensor - MQ-3
1 x 220k Ohm
1 x Temperature and Humidity Sensor - RHT03
1 x PIR Motion Sensor (JST)
1 x SparkFun Solderable Half-Breadboard
1 x Half-Breadboard
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// EEPROM Library to Read and Write EEPROM with Unique ID for Unit
#include <EEPROM.h>
// RHT Temperature and Humidity Sensor
#include <SparkFun_RHT03.h>
// Adafruit RGB LCD Shield 16x2
#include <Adafruit_RGBLCDShield.h>
// Wire
#include <Wire.h>
// DS3231 RTC Date and Time
#include <RTClib.h>

// RHT Temperature and Humidity Sensor
// RHT03 data pin Digital 5
const int RHT03_DATA_PIN = 5;
// This creates a RTH03 object, which we'll use to interact with the sensor
RHT03 rht;
float latestHumidity;
float latestTempC;

// Gas Sensors MQ
// Hydrogen Gas Sensor - MQ-8
int iMQ8 = A0;
int iMQ8Raw = 0;
int iMQ8ppm = 0;
// Two points are taken from the curve in datasheet.
// With these two points, a line is formed which is
// "approximately equivalent" to the original curve.
float H2Curve[3] = {2.3, 0.93,-1.44};

// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int iMQ9 = A1;
int iMQ9Raw = 0;
int iMQ9ppm = 0;

// Carbon Monoxide Gas Sensor - MQ-7
int iMQ7 = A2;
int iMQ7Raw = 0;
int iMQ7ppm = 0;

// Alcohol Gas Sensor - MQ-3
int iMQ3 = A3;
int iMQ3Raw = 0;
int iMQ3ppm = 0;

// PIR Motion
// Motion detector
const int iMotion = 7;
// Proximity
int proximity = LOW;
String Det = "";

// Adafruit RGB LCD Shield
Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield();
// These #defines make it easy to set the backlight color
#define OFF 0x0
#define RED 0x1
#define YELLOW 0x3
#define GREEN 0x2
#define TEAL 0x6
#define BLUE 0x4
#define VIOLET 0x5
#define WHITE 0x7
// Momentary Button
int yy = 0;
uint8_t momentaryButton = 0;

// DS3231 RTC Date and Time
RTC_DS3231 rtc;
String sDate;
String sTime;

// Software Version Information
String uid = "";
// Version
String sver = "15-16";

void loop()
{
     
  // Adafruit RGB LCD Shield
  // Clear
  RGBLCDShield.clear();
  
  // RHT Temperature and Humidity Sensor
  isRHT03();

  // Gas Sensors MQ
  isGasSensor();

  // isPIR Motion
  isPIR();

  // DS3231 RTC Date and Time
  isRTC();

  // Adafruit RGB LCD Shield
  // Display
  isDisplay();

  // Delay
  // Turn the LED on HIGH is the voltage level
  digitalWrite(LED_BUILTIN, HIGH);
  // Wait for a 0.5 second
  delay( 500 );
  // Turn the LED off by making the voltage LOW
  digitalWrite(LED_BUILTIN, LOW);
  // Wait for a 0.5 second
  delay( 500 );
 
}

getEEPROM.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// EEPROM
// isUID EEPROM Unique ID
void isUID()
{
// Is Unit ID
uid = "";
for (int x = 0; x < 5; x++)
{
uid = uid + char(EEPROM.read(x));
}
}
// EEPROM // isUID EEPROM Unique ID void isUID() { // Is Unit ID uid = ""; for (int x = 0; x < 5; x++) { uid = uid + char(EEPROM.read(x)); } }
// EEPROM
// isUID EEPROM Unique ID
void isUID()
{
  
  // Is Unit ID
  uid = "";
  for (int x = 0; x < 5; x++)
  {
    uid = uid + char(EEPROM.read(x));
  }
  
}

getGasSensorMQ.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Gas Sensors MQ
// Gas Sensor
void isGasSensor() {
// Read in analog value from each gas sensors
// Hydrogen Gas Sensor - MQ-8
iMQ8Raw = analogRead( iMQ8 );
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
iMQ9Raw = analogRead( iMQ9 );
// Carbon Monoxide Gas Sensor - MQ-7
iMQ7Raw = analogRead( iMQ7 );
// Alcohol Gas Sensor - MQ-3
iMQ3Raw = analogRead( iMQ3 );
// Caclulate the PPM of each gas sensors
// Hydrogen Gas Sensor - MQ-8
iMQ8ppm = isMQ8( iMQ8Raw );
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
iMQ9ppm = isMQ9( iMQ9Raw );
// Carbon Monoxide Gas Sensor - MQ-7
iMQ7ppm = isMQ7( iMQ7Raw );
// Alcohol Gas Sensor - MQ-3
iMQ3ppm = isMQ3( iMQ3Raw );
}
// Hydrogen Gas Sensor - MQ-8 - PPM
int isMQ8(double rawValue) {
// RvRo
double RvRo = rawValue * (3.3 / 1023);
return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0])));
}
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int isMQ9(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double ppm = 3.027*exp(1.0698*( RvRo ));
return ppm;
}
// Carbon Monoxide Gas Sensor - MQ-7
int isMQ7(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double ppm = 3.027*exp(1.0698*( RvRo ));
return ppm;
}
// Alcohol Gas Sensor - MQ-3
int isMQ3(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double bac = RvRo * 0.21;
return bac;
}
// Gas Sensors MQ // Gas Sensor void isGasSensor() { // Read in analog value from each gas sensors // Hydrogen Gas Sensor - MQ-8 iMQ8Raw = analogRead( iMQ8 ); // Carbon Monoxide & Flammable Gas Sensor - MQ-9 iMQ9Raw = analogRead( iMQ9 ); // Carbon Monoxide Gas Sensor - MQ-7 iMQ7Raw = analogRead( iMQ7 ); // Alcohol Gas Sensor - MQ-3 iMQ3Raw = analogRead( iMQ3 ); // Caclulate the PPM of each gas sensors // Hydrogen Gas Sensor - MQ-8 iMQ8ppm = isMQ8( iMQ8Raw ); // Carbon Monoxide & Flammable Gas Sensor - MQ-9 iMQ9ppm = isMQ9( iMQ9Raw ); // Carbon Monoxide Gas Sensor - MQ-7 iMQ7ppm = isMQ7( iMQ7Raw ); // Alcohol Gas Sensor - MQ-3 iMQ3ppm = isMQ3( iMQ3Raw ); } // Hydrogen Gas Sensor - MQ-8 - PPM int isMQ8(double rawValue) { // RvRo double RvRo = rawValue * (3.3 / 1023); return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0]))); } // Carbon Monoxide & Flammable Gas Sensor - MQ-9 int isMQ9(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double ppm = 3.027*exp(1.0698*( RvRo )); return ppm; } // Carbon Monoxide Gas Sensor - MQ-7 int isMQ7(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double ppm = 3.027*exp(1.0698*( RvRo )); return ppm; } // Alcohol Gas Sensor - MQ-3 int isMQ3(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double bac = RvRo * 0.21; return bac; }
// Gas Sensors MQ
// Gas Sensor
void isGasSensor() {

  // Read in analog value from each gas sensors
  
  // Hydrogen Gas Sensor - MQ-8
  iMQ8Raw = analogRead( iMQ8 );

  // Carbon Monoxide & Flammable Gas Sensor - MQ-9
  iMQ9Raw = analogRead( iMQ9 );  

  // Carbon Monoxide Gas Sensor - MQ-7
  iMQ7Raw = analogRead( iMQ7 );

  // Alcohol Gas Sensor - MQ-3
  iMQ3Raw = analogRead( iMQ3 );
  
  // Caclulate the PPM of each gas sensors

  // Hydrogen Gas Sensor - MQ-8
  iMQ8ppm = isMQ8( iMQ8Raw );

  // Carbon Monoxide & Flammable Gas Sensor - MQ-9
  iMQ9ppm = isMQ9( iMQ9Raw ); 

  // Carbon Monoxide Gas Sensor - MQ-7
  iMQ7ppm = isMQ7( iMQ7Raw ); 

  // Alcohol Gas Sensor - MQ-3
  iMQ3ppm = isMQ3( iMQ3Raw ); 

}
// Hydrogen Gas Sensor - MQ-8 - PPM
int isMQ8(double rawValue) {

  // RvRo
  double RvRo = rawValue * (3.3 / 1023);

  return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0])));
  
}
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int isMQ9(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double ppm = 3.027*exp(1.0698*( RvRo ));
  return ppm;
  
}
// Carbon Monoxide Gas Sensor - MQ-7
int isMQ7(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double ppm = 3.027*exp(1.0698*( RvRo ));
  return ppm;
  
}
// Alcohol Gas Sensor - MQ-3
int isMQ3(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double bac = RvRo * 0.21;
  return bac;
  
}

getPIR.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// PIR Motion
// Setup PIR
void setupPIR() {
// Setup PIR Montion
pinMode(iMotion, INPUT_PULLUP);
}
// isPIR Motion
void isPIR() {
// Proximity
proximity = digitalRead(iMotion);
if (proximity == LOW)
{
// PIR Motion Sensor's LOW, Motion is detected
Det = "Motion Yes";
}
else
{
// PIR Motion Sensor's HIGH
Det = "No";
}
}
// PIR Motion // Setup PIR void setupPIR() { // Setup PIR Montion pinMode(iMotion, INPUT_PULLUP); } // isPIR Motion void isPIR() { // Proximity proximity = digitalRead(iMotion); if (proximity == LOW) { // PIR Motion Sensor's LOW, Motion is detected Det = "Motion Yes"; } else { // PIR Motion Sensor's HIGH Det = "No"; } }
// PIR Motion
// Setup PIR
void setupPIR() {

  // Setup PIR Montion
  pinMode(iMotion, INPUT_PULLUP);
  
}
// isPIR Motion
void isPIR() {

  // Proximity
  proximity = digitalRead(iMotion);
  if (proximity == LOW) 
  {

    // PIR Motion Sensor's LOW, Motion is detected
    Det = "Motion Yes";

  }
  else
  {

    // PIR Motion Sensor's HIGH
    Det = "No";
    
  }
  
}

getRGBLCDShield.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Adafruit RGB LCD Shield
// Setup RGB LCD Shield
void isSetupRGBLCDShield() {
// Adafruit RGB LCD Shield
// Set up the LCD's number of columns and rows:
RGBLCDShield.begin(16, 2);
// Set the cursor to column 0, line 0
RGBLCDShield.setBacklight(RED);
// Don luc
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print("Don Luc");
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Electronics
RGBLCDShield.print("Electronics");
// Delay
delay(5000);
// Clear
RGBLCDShield.clear();
// Set the cursor to column 0, line 0
RGBLCDShield.setBacklight(TEAL);
// Version
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print("Version: " + sver);
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Unit ID
RGBLCDShield.print("Unit ID: " + uid);
// Delay
delay(5000);
// Clear
RGBLCDShield.clear();
}
// isDisplay
void isDisplay() {
// Momentary Button
momentaryButton = RGBLCDShield.readButtons();
switch ( yy ) {
case 1:
// RHT Temperature and Humidity Sensor
// Set the cursor to column 0, line 0
RGBLCDShield.setCursor(0,0);
// Temperature C
RGBLCDShield.print( "Temp C: " );
RGBLCDShield.print( latestTempC );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Humidity
RGBLCDShield.print( "Humidity: " );
RGBLCDShield.print( latestHumidity );
break;
case 2:
// PIR Motion Sensor
// Set the cursor to column 0, line 0
// PIR Motion Sensor
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print( "PIR Motion" );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Det
RGBLCDShield.print( Det );
break;
case 3:
// Gas Sensors 1
// Set the cursor to column 0, line 0
RGBLCDShield.setCursor(0,0);
// Hydrogen Gas Sensor - MQ-8
RGBLCDShield.print( "MQ-8: " );
RGBLCDShield.print( iMQ8ppm );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
RGBLCDShield.print( "MQ-9: " );
RGBLCDShield.print( iMQ9ppm );
break;
case 4:
// Gas Sensors 2
// Set the cursor to column 0, line 0
RGBLCDShield.setCursor(0,0);
// Carbon Monoxide Gas Sensor - MQ-7
RGBLCDShield.print( "MQ-7: " );
RGBLCDShield.print( iMQ7ppm );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Alcohol Gas Sensor - MQ-3
RGBLCDShield.print( "MQ-3: " );
RGBLCDShield.print( iMQ3ppm );
break;
case 5:
// DS3231 RTC Date and Time
// Date and Time
DateTime now = rtc.now();
// Set the cursor to column 0, line 0
// Date
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print( sDate );
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Time
RGBLCDShield.print( sTime );
break;
default:
// Don luc Electronics
yy = 5;
RGBLCDShield.setBacklight(RED);
// Set the cursor to column 0, line 0
// Don luc
RGBLCDShield.setCursor(0,0);
RGBLCDShield.print("Don Luc");
// Set the cursor to column 0, line 1
RGBLCDShield.setCursor(0, 1);
// Electronics
RGBLCDShield.print("Electronics");
}
if ( momentaryButton ) {
if ( momentaryButton & BUTTON_UP ) {
yy = 1;
// RHT Temperature and Humidity Sensor
RGBLCDShield.setBacklight(GREEN);
}
if ( momentaryButton & BUTTON_DOWN ) {
yy = 2;
// PIR Motion Sensor
RGBLCDShield.setBacklight(VIOLET);
}
if ( momentaryButton & BUTTON_LEFT ) {
yy = 3;
// Gas Sensors 1
RGBLCDShield.setBacklight(TEAL);
}
if ( momentaryButton & BUTTON_RIGHT ) {
yy = 4;
// Gas Sensors 2
RGBLCDShield.setBacklight(YELLOW);
}
if ( momentaryButton & BUTTON_SELECT ) {
yy = 5;
// DS3231 RTC Date and Time
RGBLCDShield.setBacklight(WHITE);
}
}
}
// Adafruit RGB LCD Shield // Setup RGB LCD Shield void isSetupRGBLCDShield() { // Adafruit RGB LCD Shield // Set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); // Set the cursor to column 0, line 0 RGBLCDShield.setBacklight(RED); // Don luc RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Electronics RGBLCDShield.print("Electronics"); // Delay delay(5000); // Clear RGBLCDShield.clear(); // Set the cursor to column 0, line 0 RGBLCDShield.setBacklight(TEAL); // Version RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Version: " + sver); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Unit ID RGBLCDShield.print("Unit ID: " + uid); // Delay delay(5000); // Clear RGBLCDShield.clear(); } // isDisplay void isDisplay() { // Momentary Button momentaryButton = RGBLCDShield.readButtons(); switch ( yy ) { case 1: // RHT Temperature and Humidity Sensor // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); // Temperature C RGBLCDShield.print( "Temp C: " ); RGBLCDShield.print( latestTempC ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Humidity RGBLCDShield.print( "Humidity: " ); RGBLCDShield.print( latestHumidity ); break; case 2: // PIR Motion Sensor // Set the cursor to column 0, line 0 // PIR Motion Sensor RGBLCDShield.setCursor(0,0); RGBLCDShield.print( "PIR Motion" ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Det RGBLCDShield.print( Det ); break; case 3: // Gas Sensors 1 // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); // Hydrogen Gas Sensor - MQ-8 RGBLCDShield.print( "MQ-8: " ); RGBLCDShield.print( iMQ8ppm ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Carbon Monoxide & Flammable Gas Sensor - MQ-9 RGBLCDShield.print( "MQ-9: " ); RGBLCDShield.print( iMQ9ppm ); break; case 4: // Gas Sensors 2 // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); // Carbon Monoxide Gas Sensor - MQ-7 RGBLCDShield.print( "MQ-7: " ); RGBLCDShield.print( iMQ7ppm ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Alcohol Gas Sensor - MQ-3 RGBLCDShield.print( "MQ-3: " ); RGBLCDShield.print( iMQ3ppm ); break; case 5: // DS3231 RTC Date and Time // Date and Time DateTime now = rtc.now(); // Set the cursor to column 0, line 0 // Date RGBLCDShield.setCursor(0,0); RGBLCDShield.print( sDate ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Time RGBLCDShield.print( sTime ); break; default: // Don luc Electronics yy = 5; RGBLCDShield.setBacklight(RED); // Set the cursor to column 0, line 0 // Don luc RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); // Electronics RGBLCDShield.print("Electronics"); } if ( momentaryButton ) { if ( momentaryButton & BUTTON_UP ) { yy = 1; // RHT Temperature and Humidity Sensor RGBLCDShield.setBacklight(GREEN); } if ( momentaryButton & BUTTON_DOWN ) { yy = 2; // PIR Motion Sensor RGBLCDShield.setBacklight(VIOLET); } if ( momentaryButton & BUTTON_LEFT ) { yy = 3; // Gas Sensors 1 RGBLCDShield.setBacklight(TEAL); } if ( momentaryButton & BUTTON_RIGHT ) { yy = 4; // Gas Sensors 2 RGBLCDShield.setBacklight(YELLOW); } if ( momentaryButton & BUTTON_SELECT ) { yy = 5; // DS3231 RTC Date and Time RGBLCDShield.setBacklight(WHITE); } } }
// Adafruit RGB LCD Shield
// Setup RGB LCD Shield
void isSetupRGBLCDShield() {

  // Adafruit RGB LCD Shield
  // Set up the LCD's number of columns and rows: 
  RGBLCDShield.begin(16, 2);

  // Set the cursor to column 0, line 0
  RGBLCDShield.setBacklight(RED);
  // Don luc 
  RGBLCDShield.setCursor(0,0);
  RGBLCDShield.print("Don Luc");
  // Set the cursor to column 0, line 1
  RGBLCDShield.setCursor(0, 1);
  // Electronics
  RGBLCDShield.print("Electronics");
  // Delay
  delay(5000);
  // Clear
  RGBLCDShield.clear();

  // Set the cursor to column 0, line 0
  RGBLCDShield.setBacklight(TEAL);
  // Version 
  RGBLCDShield.setCursor(0,0);
  RGBLCDShield.print("Version: " + sver);
  // Set the cursor to column 0, line 1
  RGBLCDShield.setCursor(0, 1);
  // Unit ID
  RGBLCDShield.print("Unit ID: " + uid);
  // Delay
  delay(5000);
  // Clear
  RGBLCDShield.clear();
  
}
// isDisplay
void isDisplay() {

  // Momentary Button
  momentaryButton = RGBLCDShield.readButtons();

  switch ( yy ) {
    case 1:
    
      // RHT Temperature and Humidity Sensor
      // Set the cursor to column 0, line 0
      RGBLCDShield.setCursor(0,0);
      // Temperature C
      RGBLCDShield.print( "Temp C: " );
      RGBLCDShield.print( latestTempC );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Humidity
      RGBLCDShield.print( "Humidity: " );
      RGBLCDShield.print( latestHumidity );

      break;
    case 2:
    
      // PIR Motion Sensor
      // Set the cursor to column 0, line 0
      // PIR Motion Sensor
      RGBLCDShield.setCursor(0,0);
      RGBLCDShield.print( "PIR Motion" );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Det
      RGBLCDShield.print( Det );
      
      break;
    case 3:

      // Gas Sensors 1
      // Set the cursor to column 0, line 0
      RGBLCDShield.setCursor(0,0);
      // Hydrogen Gas Sensor - MQ-8
      RGBLCDShield.print( "MQ-8: " );
      RGBLCDShield.print( iMQ8ppm );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Carbon Monoxide & Flammable Gas Sensor - MQ-9
      RGBLCDShield.print( "MQ-9: " );
      RGBLCDShield.print( iMQ9ppm );
      
      break;
    case 4:

      // Gas Sensors 2
      // Set the cursor to column 0, line 0
      RGBLCDShield.setCursor(0,0);
      // Carbon Monoxide Gas Sensor - MQ-7
      RGBLCDShield.print( "MQ-7: " );
      RGBLCDShield.print( iMQ7ppm );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Alcohol Gas Sensor - MQ-3
      RGBLCDShield.print( "MQ-3: " );
      RGBLCDShield.print( iMQ3ppm );
      
      break;
    case 5:

      // DS3231 RTC Date and Time
      // Date and Time
      DateTime now = rtc.now();
      // Set the cursor to column 0, line 0
      // Date 
      RGBLCDShield.setCursor(0,0);
      RGBLCDShield.print( sDate );
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Time
      RGBLCDShield.print( sTime );
      
      break;
    default:

      // Don luc Electronics
      yy = 5;
      RGBLCDShield.setBacklight(RED);
      // Set the cursor to column 0, line 0
      // Don luc 
      RGBLCDShield.setCursor(0,0);
      RGBLCDShield.print("Don Luc");
      // Set the cursor to column 0, line 1
      RGBLCDShield.setCursor(0, 1);
      // Electronics
      RGBLCDShield.print("Electronics");

   }
   
   if ( momentaryButton ) {
    
    if ( momentaryButton & BUTTON_UP ) {
      
      yy = 1;
      // RHT Temperature and Humidity Sensor
      RGBLCDShield.setBacklight(GREEN);
      
    }
    
    if ( momentaryButton & BUTTON_DOWN ) {
      
      yy = 2;
      // PIR Motion Sensor
      RGBLCDShield.setBacklight(VIOLET);
      
    }
    
    if ( momentaryButton & BUTTON_LEFT ) {
      
      yy = 3;
      // Gas Sensors 1
      RGBLCDShield.setBacklight(TEAL);
      
    }
    
    if ( momentaryButton & BUTTON_RIGHT ) {

      yy = 4;
      // Gas Sensors 2
      RGBLCDShield.setBacklight(YELLOW);
    }
    
    if ( momentaryButton & BUTTON_SELECT ) {

      yy = 5;
      // DS3231 RTC Date and Time
      RGBLCDShield.setBacklight(WHITE);
   
    }
    
  }
  
}

getRHT.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// RHT Temperature and Humidity Sensor
// setup RHT Temperature and Humidity Sensor
void setupRTH03() {
// RHT Temperature and Humidity Sensor
// Call rht.begin() to initialize the sensor and our data pin
rht.begin(RHT03_DATA_PIN);
}
// RHT Temperature and Humidity Sensor
void isRHT03(){
// Call rht.update() to get new humidity and temperature values from the sensor.
int updateRet = rht.update();
// The humidity(), tempC(), and tempF() functions can be called -- after
// a successful update() -- to get the last humidity and temperature value
latestHumidity = rht.humidity();
latestTempC = rht.tempC();
}
// RHT Temperature and Humidity Sensor // setup RHT Temperature and Humidity Sensor void setupRTH03() { // RHT Temperature and Humidity Sensor // Call rht.begin() to initialize the sensor and our data pin rht.begin(RHT03_DATA_PIN); } // RHT Temperature and Humidity Sensor void isRHT03(){ // Call rht.update() to get new humidity and temperature values from the sensor. int updateRet = rht.update(); // The humidity(), tempC(), and tempF() functions can be called -- after // a successful update() -- to get the last humidity and temperature value latestHumidity = rht.humidity(); latestTempC = rht.tempC(); }
// RHT Temperature and Humidity Sensor
// setup RHT Temperature and Humidity Sensor
void setupRTH03() {

  // RHT Temperature and Humidity Sensor
  // Call rht.begin() to initialize the sensor and our data pin
  rht.begin(RHT03_DATA_PIN);
  
}
// RHT Temperature and Humidity Sensor
void isRHT03(){

  // Call rht.update() to get new humidity and temperature values from the sensor.
  int updateRet = rht.update();

  // The humidity(), tempC(), and tempF() functions can be called -- after 
  // a successful update() -- to get the last humidity and temperature value 
  latestHumidity = rht.humidity();
  latestTempC = rht.tempC();

}

getRTC.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// DS3231 RTC Date and Time
// Setup DS3231 RTC
void isSetupRTC() {
if (! rtc.begin()) {
while (1);
}
if (rtc.lostPower()) {
// Following line sets the RTC to the date & time this sketch was compiled
rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
// This line sets the RTC with an explicit date & time, for example to set
// January 21, 2014 at 3am you would call:
// rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
}
}
// DS3231 RTC Date and Time
void isRTC(){
// Date and Time
sDate = "";
sTime = "";
// Date Time
DateTime now = rtc.now();
// sData
sDate += String(now.year(), DEC);
sDate += "/";
sDate += String(now.month(), DEC);
sDate += "/";
sDate += String(now.day(), DEC);
// sTime
sTime += String(now.hour(), DEC);
sTime += ":";
sTime += String(now.minute(), DEC);
sTime += ":";
sTime += String(now.second(), DEC);
}
// DS3231 RTC Date and Time // Setup DS3231 RTC void isSetupRTC() { if (! rtc.begin()) { while (1); } if (rtc.lostPower()) { // Following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0)); } } // DS3231 RTC Date and Time void isRTC(){ // Date and Time sDate = ""; sTime = ""; // Date Time DateTime now = rtc.now(); // sData sDate += String(now.year(), DEC); sDate += "/"; sDate += String(now.month(), DEC); sDate += "/"; sDate += String(now.day(), DEC); // sTime sTime += String(now.hour(), DEC); sTime += ":"; sTime += String(now.minute(), DEC); sTime += ":"; sTime += String(now.second(), DEC); }
// DS3231 RTC Date and Time
// Setup DS3231 RTC
void isSetupRTC() {

  if (! rtc.begin()) {
    while (1);
  }

  if (rtc.lostPower()) {
    // Following line sets the RTC to the date & time this sketch was compiled
    rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
    // This line sets the RTC with an explicit date & time, for example to set
    // January 21, 2014 at 3am you would call:
    // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));
  }
  
}
// DS3231 RTC Date and Time
void isRTC(){
 
    // Date and Time
    sDate = "";
    sTime = "";
    // Date Time
    DateTime now = rtc.now();

    // sData
    sDate += String(now.year(), DEC);
    sDate += "/";
    sDate += String(now.month(), DEC);
    sDate += "/";
    sDate += String(now.day(), DEC);
  
    // sTime
    sTime += String(now.hour(), DEC);
    sTime += ":";
    sTime += String(now.minute(), DEC);
    sTime += ":";
    sTime += String(now.second(), DEC);
    
}

setup.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Setup
void setup()
{
// EEPROM Unique ID
isUID();
// RHT Temperature and Humidity Sensor
// Setup RTH03 Temperature and Humidity Sensor
setupRTH03();
// PIR Motion
// Setup PIR
setupPIR();
// Setup DS3231 RTC
isSetupRTC();
// Initialize digital pin LED_BUILTIN as an output.
pinMode(LED_BUILTIN, OUTPUT);
// Adafruit RGB LCD Shield
isSetupRGBLCDShield();
}
// Setup void setup() { // EEPROM Unique ID isUID(); // RHT Temperature and Humidity Sensor // Setup RTH03 Temperature and Humidity Sensor setupRTH03(); // PIR Motion // Setup PIR setupPIR(); // Setup DS3231 RTC isSetupRTC(); // Initialize digital pin LED_BUILTIN as an output. pinMode(LED_BUILTIN, OUTPUT); // Adafruit RGB LCD Shield isSetupRGBLCDShield(); }
// Setup
void setup()
{
    
  // EEPROM Unique ID
  isUID();
  
  // RHT Temperature and Humidity Sensor
  // Setup RTH03 Temperature and Humidity Sensor
  setupRTH03();

  // PIR Motion
  // Setup PIR
  setupPIR();

  // Setup DS3231 RTC
  isSetupRTC();

  // Initialize digital pin LED_BUILTIN as an output.
  pinMode(LED_BUILTIN, OUTPUT);

  // Adafruit RGB LCD Shield
  isSetupRGBLCDShield();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Research & Development (R & D)
  • Desktop Applications (Windows, OSX, Linux, Multi-OS, Multi-Tier, etc…)
  • Mobile Applications (Android, iOS, Blackberry, Windows Mobile, Windows CE, etc…)
  • Web Applications (LAMP, Scripting, Java, ASP, ASP.NET, RoR, Wakanda, etc…)
  • Social Media Programming & Integration (Facebook, Twitter, YouTube, Pinterest, etc…)
  • Content Management Systems (WordPress, Drupal, Joomla, Moodle, etc…)
  • Bulletin Boards (phpBB, SMF, Vanilla, jobberBase, etc…)
  • eCommerce (WooCommerce, OSCommerce, ZenCart, PayPal Shopping Cart, etc…)

Instructor and E-Mentor

  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics
  • DOS, Windows, OSX, Linux, iOS, Android, Multi-OS
  • Linux-Apache-PHP-MySQL

Follow Us

J. Luc Paquin – Curriculum Vitae – 2021 English & Español
https://www.jlpconsultants.com/luc/

Web: https://www.donluc.com/
Web: https://www.jlpconsultants.com/
Web: https://www.donluc.com/DLE/
Web: https://www.donluc.com/DLHackster/
Web: https://www.hackster.io/neosteam-labs
Web: https://zoom.us/
Patreon: https://www.patreon.com/DonLucElectronics
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #14: Components – SparkFun Solderable Breadboard – Mk20

——

#DonLuc #Electronics #Components #SolderableBreadboard #Microcontrollers #Environment #SparkFun #Consultant #Vlog #Aphasia

——

Components

——

Components

——

SparkFun Solderable Breadboard

SparkFun Item: PRT-12070

This is the SparkFun Solderable Breadboard. A bare PCB that is the exact size as our regular breadboard with the same connections to pins and power rails. This board is especially useful for preserving a prototype or experiment you just created on a solderless breadboard by soldering all the pieces in place.

Technology Experience

  • Single-Board Microcontrollers (Arduino, Raspberry Pi,Espressif, etc…)
  • Robotics
  • Research & Development (R & D)
  • Desktop Applications (Windows, OSX, Linux, Multi-OS, Multi-Tier, etc…)
  • Mobile Applications (Android, iOS, Blackberry, Windows Mobile, Windows CE, etc…)
  • Web Applications (LAMP, Scripting, Java, ASP, ASP.NET, RoR, Wakanda, etc…)
  • Social Media Programming & Integration (Facebook, Twitter, YouTube, Pinterest, etc…)
  • Content Management Systems (WordPress, Drupal, Joomla, Moodle, etc…)
  • Bulletin Boards (phpBB, SMF, Vanilla, jobberBase, etc…)
  • eCommerce (WooCommerce, OSCommerce, ZenCart, PayPal Shopping Cart, etc…)

Instructor

  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics
  • DOS, Windows, OSX, Linux, iOS, Android, Multi-OS
  • Linux-Apache-PHP-MySQL

Follow Us

The Alpha Geek

Aphasia
https://www.donluc.com/?page_id=2149

J. Luc Paquin – Curriculum Vitae
https://www.donluc.com/DLHackster/LucPaquinCVEngMk2020a.pdf

Web: https://www.donluc.com/
Web: http://www.jlpconsultants.com/
Web: https://www.donluc.com/DLHackster/
Web: https://www.hackster.io/neosteam-labs
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/luc.paquin/

Don Luc

Project #15: Environment – PIR Motion Sensor – Mk12

——

#DonLuc #Environment #ESP32 #MQ #GPS #EMF #PIR #SparkFun #Adafruit #Pololu #Fritzing #Programming #Arduino #Consultant #Electronics #Microcontrollers #Vlog #Aphasia

——

Environment

——

Environment

——

Environment

——

PIR Motion Sensor (JST)

SparkFun Item: SEN-13285

This is a simple to use motion sensor. Power it up and wait 1-2 seconds for the sensor to get a snapshot of the still room. If anything moves after that period, the ‘alarm’ pin will go low. The alarm pin is an open collector meaning you will need a pull up resistor on the alarm pin. The open drain setup allows multiple motion sensors to be connected on a single input pin. If any of the motion sensors go off, the input pin will be pulled low.

We’ve finally updated the connector! Gone is the old “odd” connector, now you will find a common 3-pin JST! This makes the PIR Sensor much more accessible for whatever your project may need. Red = Power, White = Ground, and Black = Alarm.

DL2006Mk02

1 x SparkFun Thing Plus – ESP32 WROOM
1 x Adafruit SHARP Memory Display
1 x SparkFun Environmental Combo Breakout – CCS811/BME280
1 x Adafruit Adalogger FeatherWing – RTC + SD
1 x SparkFun GPS Receiver – GP-20U7
1 x CR1220 12mm Lithium Battery
1 x 32Gb microSD Card
1 x Mountable Slide Switch
1 x SparkFun Rotary Switch – 10 Position
1 x Black Knob
1 x Breadboard Solderable
4 x Pololu Carrier for MQ Gas Sensors
1 x SparkFun Hydrogen Gas Sensor – MQ-8
1 x Pololu Carbon Monoxide & Flammable Gas Sensor – MQ-9
1 x SparkFun Carbon Monoxide Gas Sensor – MQ-7
1 x SparkFun Alcohol Gas Sensor – MQ-3
1 x Telescopic Antenna SMA – 300 MHz to 1.1 GHz (ANT700)
1 x SMA Connector
1 x Humidity and Temperature Sensor – RHT03
1 x PIR Motion Sensor (JST)
1 x Qwiic Cable – 100mm
1 x LED Green
11 x 1K Ohm
1 x 4.7K Ohm
2 x 10K Ohm
1 x 20k Ohm
1 x 200k Ohm
1 x 3.3m Ohm
12 x Jumper Wires 3in M/M
13 x Jumper Wires 6in M/M
20 x Wire Solid Core – 22 AWG
2 x Full-Size Breadboard
1 x SparkFun Cerberus USB Cable
1 x DC Power Supply

SparkFun Thing Plus – ESP32 WROOM

LEG – Digital 21
SCK – Digital 13
MOS – Digital 12
SSD – Digital 27
SDA – Digital 23
SCL – Digital 22
SD1 – Digital 33
SC2 – Digital 5
MO2 – Digital 18
MI2 – Digital 19
SS1 – Digital 16
ROT – Analog A1
MH1 – Analog A0
MC1 – Analog A2
MC2 – Analog A3
MA1 – Analog A4
EMF – Analog A5
GPS – Digital 14
RHT – Digital 15
PIR – Digital 17
VIN – +3.3V
GND – GND

DL2006Mk02p.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// ***** Don Luc Electronics © *****
// Software Version Information
// Project #15: Environment - PIR Motion Sensor (JST) - Mk12
// 06-02
// DL2006Mk02p.ino 15-12
// EEPROM with Unique ID
// 1 x SparkFun Thing Plus - ESP32 WROOM
// 1 x Adafruit SHARP Memory Display
// 1 x SparkFun Environmental Combo Breakout - CCS811/BME280
// 1 x Adafruit Adalogger FeatherWing - RTC + SD
// 1 x SparkFun GPS Receiver - GP-20U7
// 1 x CR1220 12mm Lithium Battery
// 1 x 32Gb microSD Card
// 1 x Mountable Slide Switch
// 1 x SparkFun Rotary Switch - 10 Position
// 1 x Black Knob
// 1 x Breadboard Solderable
// 4 x Pololu Carrier for MQ Gas Sensors
// 1 x SparkFun Hydrogen Gas Sensor - MQ-8
// 1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9
// 1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7
// 1 x SparkFun Alcohol Gas Sensor - MQ-3
// 1 x Telescopic Antenna SMA - 300 MHz to 1.1 GHz (ANT700)
// 1 x SMA Connector
// 1 x Humidity and Temperature Sensor - RHT03
// 1 x PIR Motion Sensor (JST)
// 1 x Qwiic Cable - 100mm
// 1 x LED Green
// 11 x 1K Ohm
// 1 x 4.7K Ohm
// 2 x 10K Ohm
// 1 x 20k Ohm
// 1 x 200k Ohm
// 1 x 3.3m Ohm
// 12 x Jumper Wires 3in M/M
// 13 x Jumper Wires 6in M/M
// 20 x Wire Solid Core - 22 AWG
// 2 x Full-Size Breadboard
// 1 x SparkFun Cerberus USB Cable
// 1 x DC Power Supply
// Include the Library Code
// EEPROM Library to Read and Write EEPROM with Unique ID for Unit
#include "EEPROM.h"
// Wire
#include <Wire.h>
// SHARP Memory Display
#include <Adafruit_SharpMem.h>
#include <Adafruit_GFX.h>
// SparkFun CCS811 - eCO2 & tVOC
#include <SparkFunCCS811.h>
// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
#include <SparkFunBME280.h>
// Date and Time
#include "RTClib.h"
// SD Card
#include "FS.h"
#include "SD.h"
#include "SPI.h"
// GPS Receiver
#include <TinyGPS++.h>
// Hardware Serial
#include <HardwareSerial.h>
// RHT Humidity and Temperature Sensor
#include <SparkFun_RHT03.h>
// LED Green
int iLEDGreen = 21;
// SHARP Memory Display
// any pins can be used
#define SHARP_SCK 13
#define SHARP_MOSI 12
#define SHARP_SS 27
// Set the size of the display here - 144x168
Adafruit_SharpMem display(SHARP_SCK, SHARP_MOSI, SHARP_SS, 144, 168);
// The currently-available SHARP Memory Display (144x168 pixels)
// requires > 4K of microcontroller RAM; it WILL NOT WORK on Arduino Uno
// or other <4K "classic" devices!
#define BLACK 0
#define WHITE 1
// 1/2 of lesser of display width or height
int minorHalfSize;
// SparkFun CCS811 - eCO2 & tVOC
// Default I2C Address
#define CCS811_ADDR 0x5B
CCS811 myCCS811(CCS811_ADDR);
float CCS811CO2 = 0;
float CCS811TVOC = 0;
// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
BME280 myBME280;
float BMEtempC = 0;
float BMEhumid = 0;
float BMEaltitudeM = 0;
float BMEpressure = 0;
// Date and Time
// PCF8523 Precision RTC
RTC_PCF8523 rtc;
String dateRTC = "";
String timeRTC = "";
// microSD Card
const int chipSelect = 33;
String zzzzzz = "";
// Mountable Slide Switch
int iSS1 = 16;
// State
int iSS1State = 0;
// ESP32 HardwareSerial
HardwareSerial tGPS(2);
// GPS Receiver
#define gpsRXPIN 14
// This one is unused and doesnt have a conection
#define gpsTXPIN 32
// The TinyGPS++ object
TinyGPSPlus gps;
float TargetLat;
float TargetLon;
int GPSStatus = 0;
// Rotary Switch - 10 Position
// Number 1 => 10
int iRotNum = A0;
// iRotVal - Value
int iRotVal = 0;
// Number
int z = 0;
int x = 0;
// Gas Sensors MQ
// Hydrogen Gas Sensor - MQ-8
int iMQ8 = A1;
int iMQ8Raw = 0;
int iMQ8ppm = 0;
// Two points are taken from the curve in datasheet
// With these two points, a line is formed which is "approximately equivalent" to the original curve
float H2Curve[3] = {2.3, 0.93,-1.44};
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int iMQ9 = A2;
int iMQ9Raw = 0;
int iMQ9ppm = 0;
// Carbon Monoxide Gas Sensor - MQ-7
int iMQ7 = A3;
int iMQ7Raw = 0;
int iMQ7ppm = 0;
// Alcohol Gas Sensor - MQ-3
int iMQ3 = A4;
int iMQ3Raw = 0;
int iMQ3ppm = 0;
// EMF Meter (Single Axis)
int iEMF = A5;
// Raise this number to increase data smoothing
#define NUMREADINGS 15
// Raise this number to decrease sensitivity (up to 1023 max)
int senseLimit = 15;
// EMF Value
int valEMF = 0;
// Readings from the analog input
int readings[ NUMREADINGS ];
// Index of the current reading
int indexEMF = 0;
// Running total
int totalEMF = 0;
// Final average of the probe reading
int averageEMF = 0;
int iEMFDis = 0;
int iEMFRect = 0;
// RHT Humidity and Temperature Sensor
// RHT03 data pin Digital 15
const int RHT03_DATA_PIN = 15;
// This creates a RTH03 object, which we'll use to interact with the sensor
RHT03 rht;
float latestHumidity;
float latestTempC;
float latestTempF;
// PIR Motion
// Motion detector
const int iMotion = 17;
// Proximity
int proximity = LOW;
String Det = "";
// Software Version Information
String sver = "15-12";
// EEPROM Unique ID Information
#define EEPROM_SIZE 64
String uid = "";
void loop() {
// Receives NEMA data from GPS receiver
isGPS();
// Date and Time
isRTC();
// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
isBME280();
// SparkFun CCS811 - eCO2 & tVOC
isCCS811();
// Gas Sensors MQ
isGasSensor();
// EMF Meter (Single Axis)
isEMF();
// RHT03 Humidity and Temperature Sensor
isRHT03();
// isPIR Motion
isPIR();
// Rotary Switch
isRot();
// Slide Switch
// Read the state of the iSS1 value
iSS1State = digitalRead(iSS1);
// If it is the Slide Switch State is HIGH
if (iSS1State == HIGH) {
// iLEDGreen
digitalWrite(iLEDGreen, HIGH );
// microSD Card
isSD();
} else {
// iLEDGreen
digitalWrite(iLEDGreen, LOW );
}
delay( 1000 );
}
// ***** Don Luc Electronics © ***** // Software Version Information // Project #15: Environment - PIR Motion Sensor (JST) - Mk12 // 06-02 // DL2006Mk02p.ino 15-12 // EEPROM with Unique ID // 1 x SparkFun Thing Plus - ESP32 WROOM // 1 x Adafruit SHARP Memory Display // 1 x SparkFun Environmental Combo Breakout - CCS811/BME280 // 1 x Adafruit Adalogger FeatherWing - RTC + SD // 1 x SparkFun GPS Receiver - GP-20U7 // 1 x CR1220 12mm Lithium Battery // 1 x 32Gb microSD Card // 1 x Mountable Slide Switch // 1 x SparkFun Rotary Switch - 10 Position // 1 x Black Knob // 1 x Breadboard Solderable // 4 x Pololu Carrier for MQ Gas Sensors // 1 x SparkFun Hydrogen Gas Sensor - MQ-8 // 1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9 // 1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7 // 1 x SparkFun Alcohol Gas Sensor - MQ-3 // 1 x Telescopic Antenna SMA - 300 MHz to 1.1 GHz (ANT700) // 1 x SMA Connector // 1 x Humidity and Temperature Sensor - RHT03 // 1 x PIR Motion Sensor (JST) // 1 x Qwiic Cable - 100mm // 1 x LED Green // 11 x 1K Ohm // 1 x 4.7K Ohm // 2 x 10K Ohm // 1 x 20k Ohm // 1 x 200k Ohm // 1 x 3.3m Ohm // 12 x Jumper Wires 3in M/M // 13 x Jumper Wires 6in M/M // 20 x Wire Solid Core - 22 AWG // 2 x Full-Size Breadboard // 1 x SparkFun Cerberus USB Cable // 1 x DC Power Supply // Include the Library Code // EEPROM Library to Read and Write EEPROM with Unique ID for Unit #include "EEPROM.h" // Wire #include <Wire.h> // SHARP Memory Display #include <Adafruit_SharpMem.h> #include <Adafruit_GFX.h> // SparkFun CCS811 - eCO2 & tVOC #include <SparkFunCCS811.h> // SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure #include <SparkFunBME280.h> // Date and Time #include "RTClib.h" // SD Card #include "FS.h" #include "SD.h" #include "SPI.h" // GPS Receiver #include <TinyGPS++.h> // Hardware Serial #include <HardwareSerial.h> // RHT Humidity and Temperature Sensor #include <SparkFun_RHT03.h> // LED Green int iLEDGreen = 21; // SHARP Memory Display // any pins can be used #define SHARP_SCK 13 #define SHARP_MOSI 12 #define SHARP_SS 27 // Set the size of the display here - 144x168 Adafruit_SharpMem display(SHARP_SCK, SHARP_MOSI, SHARP_SS, 144, 168); // The currently-available SHARP Memory Display (144x168 pixels) // requires > 4K of microcontroller RAM; it WILL NOT WORK on Arduino Uno // or other <4K "classic" devices! #define BLACK 0 #define WHITE 1 // 1/2 of lesser of display width or height int minorHalfSize; // SparkFun CCS811 - eCO2 & tVOC // Default I2C Address #define CCS811_ADDR 0x5B CCS811 myCCS811(CCS811_ADDR); float CCS811CO2 = 0; float CCS811TVOC = 0; // SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure BME280 myBME280; float BMEtempC = 0; float BMEhumid = 0; float BMEaltitudeM = 0; float BMEpressure = 0; // Date and Time // PCF8523 Precision RTC RTC_PCF8523 rtc; String dateRTC = ""; String timeRTC = ""; // microSD Card const int chipSelect = 33; String zzzzzz = ""; // Mountable Slide Switch int iSS1 = 16; // State int iSS1State = 0; // ESP32 HardwareSerial HardwareSerial tGPS(2); // GPS Receiver #define gpsRXPIN 14 // This one is unused and doesnt have a conection #define gpsTXPIN 32 // The TinyGPS++ object TinyGPSPlus gps; float TargetLat; float TargetLon; int GPSStatus = 0; // Rotary Switch - 10 Position // Number 1 => 10 int iRotNum = A0; // iRotVal - Value int iRotVal = 0; // Number int z = 0; int x = 0; // Gas Sensors MQ // Hydrogen Gas Sensor - MQ-8 int iMQ8 = A1; int iMQ8Raw = 0; int iMQ8ppm = 0; // Two points are taken from the curve in datasheet // With these two points, a line is formed which is "approximately equivalent" to the original curve float H2Curve[3] = {2.3, 0.93,-1.44}; // Carbon Monoxide & Flammable Gas Sensor - MQ-9 int iMQ9 = A2; int iMQ9Raw = 0; int iMQ9ppm = 0; // Carbon Monoxide Gas Sensor - MQ-7 int iMQ7 = A3; int iMQ7Raw = 0; int iMQ7ppm = 0; // Alcohol Gas Sensor - MQ-3 int iMQ3 = A4; int iMQ3Raw = 0; int iMQ3ppm = 0; // EMF Meter (Single Axis) int iEMF = A5; // Raise this number to increase data smoothing #define NUMREADINGS 15 // Raise this number to decrease sensitivity (up to 1023 max) int senseLimit = 15; // EMF Value int valEMF = 0; // Readings from the analog input int readings[ NUMREADINGS ]; // Index of the current reading int indexEMF = 0; // Running total int totalEMF = 0; // Final average of the probe reading int averageEMF = 0; int iEMFDis = 0; int iEMFRect = 0; // RHT Humidity and Temperature Sensor // RHT03 data pin Digital 15 const int RHT03_DATA_PIN = 15; // This creates a RTH03 object, which we'll use to interact with the sensor RHT03 rht; float latestHumidity; float latestTempC; float latestTempF; // PIR Motion // Motion detector const int iMotion = 17; // Proximity int proximity = LOW; String Det = ""; // Software Version Information String sver = "15-12"; // EEPROM Unique ID Information #define EEPROM_SIZE 64 String uid = ""; void loop() { // Receives NEMA data from GPS receiver isGPS(); // Date and Time isRTC(); // SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure isBME280(); // SparkFun CCS811 - eCO2 & tVOC isCCS811(); // Gas Sensors MQ isGasSensor(); // EMF Meter (Single Axis) isEMF(); // RHT03 Humidity and Temperature Sensor isRHT03(); // isPIR Motion isPIR(); // Rotary Switch isRot(); // Slide Switch // Read the state of the iSS1 value iSS1State = digitalRead(iSS1); // If it is the Slide Switch State is HIGH if (iSS1State == HIGH) { // iLEDGreen digitalWrite(iLEDGreen, HIGH ); // microSD Card isSD(); } else { // iLEDGreen digitalWrite(iLEDGreen, LOW ); } delay( 1000 ); }
// ***** Don Luc Electronics © *****
// Software Version Information
// Project #15: Environment - PIR Motion Sensor (JST) - Mk12
// 06-02
// DL2006Mk02p.ino 15-12
// EEPROM with Unique ID
// 1 x SparkFun Thing Plus - ESP32 WROOM
// 1 x Adafruit SHARP Memory Display
// 1 x SparkFun Environmental Combo Breakout - CCS811/BME280
// 1 x Adafruit Adalogger FeatherWing - RTC + SD
// 1 x SparkFun GPS Receiver - GP-20U7
// 1 x CR1220 12mm Lithium Battery
// 1 x 32Gb microSD Card
// 1 x Mountable Slide Switch
// 1 x SparkFun Rotary Switch - 10 Position
// 1 x Black Knob
// 1 x Breadboard Solderable
// 4 x Pololu Carrier for MQ Gas Sensors
// 1 x SparkFun Hydrogen Gas Sensor - MQ-8
// 1 x Pololu Carbon Monoxide & Flammable Gas Sensor - MQ-9
// 1 x SparkFun Carbon Monoxide Gas Sensor - MQ-7
// 1 x SparkFun Alcohol Gas Sensor - MQ-3
// 1 x Telescopic Antenna SMA - 300 MHz to 1.1 GHz (ANT700)
// 1 x SMA Connector
// 1 x Humidity and Temperature Sensor - RHT03
// 1 x PIR Motion Sensor (JST)
// 1 x Qwiic Cable - 100mm
// 1 x LED Green
// 11 x 1K Ohm
// 1 x 4.7K Ohm
// 2 x 10K Ohm
// 1 x 20k Ohm
// 1 x 200k Ohm
// 1 x 3.3m Ohm
// 12 x Jumper Wires 3in M/M
// 13 x Jumper Wires 6in M/M
// 20 x Wire Solid Core - 22 AWG
// 2 x Full-Size Breadboard
// 1 x SparkFun Cerberus USB Cable
// 1 x DC Power Supply

// Include the Library Code
// EEPROM Library to Read and Write EEPROM with Unique ID for Unit
#include "EEPROM.h"
// Wire
#include <Wire.h>
// SHARP Memory Display
#include <Adafruit_SharpMem.h>
#include <Adafruit_GFX.h>
// SparkFun CCS811 - eCO2 & tVOC
#include <SparkFunCCS811.h>
// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
#include <SparkFunBME280.h>
// Date and Time
#include "RTClib.h"
// SD Card
#include "FS.h"
#include "SD.h"
#include "SPI.h"
// GPS Receiver
#include <TinyGPS++.h>
// Hardware Serial
#include <HardwareSerial.h>
// RHT Humidity and Temperature Sensor
#include <SparkFun_RHT03.h>

// LED Green
int iLEDGreen = 21;

// SHARP Memory Display
// any pins can be used
#define SHARP_SCK  13
#define SHARP_MOSI 12
#define SHARP_SS   27
// Set the size of the display here - 144x168
Adafruit_SharpMem display(SHARP_SCK, SHARP_MOSI, SHARP_SS, 144, 168);
// The currently-available SHARP Memory Display (144x168 pixels)
// requires > 4K of microcontroller RAM; it WILL NOT WORK on Arduino Uno
// or other <4K "classic" devices!
#define BLACK 0
#define WHITE 1
// 1/2 of lesser of display width or height
int minorHalfSize; 

// SparkFun CCS811 - eCO2 & tVOC
// Default I2C Address
#define CCS811_ADDR 0x5B 
CCS811 myCCS811(CCS811_ADDR);
float CCS811CO2 = 0;
float CCS811TVOC = 0;

// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
BME280 myBME280;
float BMEtempC = 0;
float BMEhumid = 0;
float BMEaltitudeM = 0;
float BMEpressure = 0;

// Date and Time
// PCF8523 Precision RTC 
RTC_PCF8523 rtc;
String dateRTC = "";
String timeRTC = "";

// microSD Card
const int chipSelect = 33;
String zzzzzz = "";

// Mountable Slide Switch
int iSS1 = 16;
// State
int iSS1State = 0;

// ESP32 HardwareSerial
HardwareSerial tGPS(2);

// GPS Receiver
#define gpsRXPIN 14
// This one is unused and doesnt have a conection
#define gpsTXPIN 32
// The TinyGPS++ object
TinyGPSPlus gps;
float TargetLat;
float TargetLon;
int GPSStatus = 0;

// Rotary Switch - 10 Position
// Number 1 => 10
int iRotNum = A0;
// iRotVal - Value 
int iRotVal = 0;
// Number
int z = 0;
int x = 0;

// Gas Sensors MQ
// Hydrogen Gas Sensor - MQ-8
int iMQ8 = A1;
int iMQ8Raw = 0;
int iMQ8ppm = 0;
// Two points are taken from the curve in datasheet
// With these two points, a line is formed which is "approximately equivalent" to the original curve
float H2Curve[3] = {2.3, 0.93,-1.44};
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int iMQ9 = A2;
int iMQ9Raw = 0;
int iMQ9ppm = 0;
// Carbon Monoxide Gas Sensor - MQ-7
int iMQ7 = A3;
int iMQ7Raw = 0;
int iMQ7ppm = 0;
// Alcohol Gas Sensor - MQ-3
int iMQ3 = A4;
int iMQ3Raw = 0;
int iMQ3ppm = 0;

// EMF Meter (Single Axis)
int iEMF = A5;
// Raise this number to increase data smoothing
#define NUMREADINGS 15
// Raise this number to decrease sensitivity (up to 1023 max)
int senseLimit = 15;
// EMF Value
int valEMF = 0;
// Readings from the analog input
int readings[ NUMREADINGS ];
// Index of the current reading
int indexEMF = 0;
// Running total
int totalEMF = 0;
// Final average of the probe reading
int averageEMF = 0;
int iEMFDis = 0;
int iEMFRect = 0;

// RHT Humidity and Temperature Sensor
// RHT03 data pin Digital 15
const int RHT03_DATA_PIN = 15;
// This creates a RTH03 object, which we'll use to interact with the sensor
RHT03 rht;
float latestHumidity;
float latestTempC;
float latestTempF;

// PIR Motion
// Motion detector
const int iMotion = 17;
// Proximity
int proximity = LOW;
String Det = "";

// Software Version Information
String sver = "15-12";
// EEPROM Unique ID Information
#define EEPROM_SIZE 64
String uid = "";

void loop() {

  // Receives NEMA data from GPS receiver
  isGPS();
  
  // Date and Time 
  isRTC();
  
  // SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
  isBME280();

  // SparkFun CCS811 - eCO2 & tVOC
  isCCS811();

  // Gas Sensors MQ
  isGasSensor();

  // EMF Meter (Single Axis)
  isEMF();

  // RHT03 Humidity and Temperature Sensor
  isRHT03();

  // isPIR Motion
  isPIR();

  // Rotary Switch
  isRot();

  // Slide Switch
  // Read the state of the iSS1 value
  iSS1State = digitalRead(iSS1);
  
  // If it is the Slide Switch State is HIGH
  if (iSS1State == HIGH) {

    // iLEDGreen
    digitalWrite(iLEDGreen,  HIGH );
    
    // microSD Card
    isSD();

  } else {

    // iLEDGreen
    digitalWrite(iLEDGreen,  LOW );
  
  }

  delay( 1000 );
  
}

getBME280.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
// isBME280 - Temperature, Humidity, Altitude and Barometric Pressure
void isBME280(){
// Temperature Celsius
BMEtempC = myBME280.readTempC();
// Humidity
BMEhumid = myBME280.readFloatHumidity();
// Altitude Meters
BMEaltitudeM = (myBME280.readFloatAltitudeMeters(), 2);
// Barometric Pressure
BMEpressure = myBME280.readFloatPressure();
}
// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure // isBME280 - Temperature, Humidity, Altitude and Barometric Pressure void isBME280(){ // Temperature Celsius BMEtempC = myBME280.readTempC(); // Humidity BMEhumid = myBME280.readFloatHumidity(); // Altitude Meters BMEaltitudeM = (myBME280.readFloatAltitudeMeters(), 2); // Barometric Pressure BMEpressure = myBME280.readFloatPressure(); }
// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
// isBME280 - Temperature, Humidity, Altitude and Barometric Pressure
void isBME280(){

  // Temperature Celsius
  BMEtempC = myBME280.readTempC();
  // Humidity
  BMEhumid = myBME280.readFloatHumidity();
  // Altitude Meters
  BMEaltitudeM = (myBME280.readFloatAltitudeMeters(), 2);
  // Barometric Pressure
  BMEpressure = myBME280.readFloatPressure();
  
}

getCCS811.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// CCS811 - eCO2 & tVOC
// isCCS811 - eCO2 & tVOC
void isCCS811(){
// This sends the temperature & humidity data to the CCS811
myCCS811.setEnvironmentalData(BMEhumid, BMEtempC);
// Calling this function updates the global tVOC and eCO2 variables
myCCS811.readAlgorithmResults();
// eCO2 Concentration
CCS811CO2 = myCCS811.getCO2();
// tVOC Concentration
CCS811TVOC = myCCS811.getTVOC();
}
// CCS811 - eCO2 & tVOC // isCCS811 - eCO2 & tVOC void isCCS811(){ // This sends the temperature & humidity data to the CCS811 myCCS811.setEnvironmentalData(BMEhumid, BMEtempC); // Calling this function updates the global tVOC and eCO2 variables myCCS811.readAlgorithmResults(); // eCO2 Concentration CCS811CO2 = myCCS811.getCO2(); // tVOC Concentration CCS811TVOC = myCCS811.getTVOC(); }
// CCS811 - eCO2 & tVOC
// isCCS811 - eCO2 & tVOC
void isCCS811(){

  // This sends the temperature & humidity data to the CCS811
  myCCS811.setEnvironmentalData(BMEhumid, BMEtempC);

  // Calling this function updates the global tVOC and eCO2 variables
  myCCS811.readAlgorithmResults();

  // eCO2 Concentration
  CCS811CO2 = myCCS811.getCO2();
  
  // tVOC Concentration
  CCS811TVOC = myCCS811.getTVOC();
  
}

getDisplay.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Display
// SHARP Memory Display - UID
void isDisplayUID() {
// Text Display
// Clear Display
display.clearDisplay();
display.setRotation(4);
display.setTextSize(3);
display.setTextColor(BLACK);
// Don Luc Electronics
display.setCursor(0,10);
display.println( "Don Luc" );
display.setTextSize(2);
display.setCursor(0,40);
display.println( "Electronics" );
// Version
display.setTextSize(3);
display.setCursor(0,70);
display.println( "Version" );
display.setTextSize(2);
display.setCursor(0,100);
display.println( sver );
// EEPROM Unique ID
display.setTextSize(1);
display.setCursor(0,130);
display.println( "EEPROM Unique ID" );
display.setTextSize(2);
display.setCursor(0,145);
display.println( uid );
// Refresh
display.refresh();
delay( 100 );
}
// Display Environmental
void isDisplayEnvironmental(){
// Text Display Environmental
// Clear Display
display.clearDisplay();
display.setRotation(4);
display.setTextSize(1);
display.setTextColor(BLACK);
// Temperature Celsius
display.setCursor(0,0);
display.println( "Temperature Celsius" );
display.setCursor(0,10);
display.print( BMEtempC );
display.println( " C" );
// Humidity
display.setCursor(0,20);
display.println( "Humidity" );
display.setCursor(0,30);
display.print( BMEhumid );
display.println( "%" );
// Altitude Meters
display.setCursor(0,40);
display.println( "Altitude Meters" );
display.setCursor(0,50);
display.print( BMEaltitudeM );
display.println( " m" );
// Pressure
display.setCursor(0,60);
display.println( "Barometric Pressure" );
display.setCursor(0,70);
display.print( BMEpressure );
display.println( " Pa" );
// eCO2 Concentration
display.setCursor(0,80);
display.println( "eCO2 Concentration" );
display.setCursor(0,90);
display.print( CCS811CO2 );
display.println( " ppm" );
// tVOC Concentration
display.setCursor(0,100);
display.println( "tVOC Concentration" );
display.setCursor(0,110);
display.print( CCS811TVOC );
display.println( " ppb" );
// Date
display.setCursor(0,120);
display.println( dateRTC );
// Time
display.setCursor(0,130);
display.println( timeRTC );
// GPS Status
display.setCursor(0,140);
display.println( GPSStatus );
// Target Latitude
display.setCursor(0,150);
display.println( TargetLat );
// Target Longitude
display.setCursor(0,160);
display.println( TargetLon );
// Refresh
display.refresh();
delay( 100 );
}
// Display Date
void isDisplayDate() {
// Text Display Date
// Clear Display
display.clearDisplay();
display.setRotation(4);
display.setTextSize(2);
display.setTextColor(BLACK);
// Date
display.setCursor(0,5);
display.println( dateRTC );
// Time
display.setCursor(0,30);
display.println( timeRTC );
// GPS Status
display.setCursor(0,60);
display.print( "GPS: " );
display.println( GPSStatus );
// Target Latitude
display.setCursor(0,80);
display.println( "Latitude" );
display.setCursor(0,100);
display.println( TargetLat );
// Target Longitude
display.setCursor(0,120);
display.println( "Longitude" );
display.setCursor(0,140);
display.println( TargetLon );
// Refresh
display.refresh();
delay( 100 );
}
// Display BME280
void isDisplayBME280() {
// Text Display BME280
// Clear Display
display.clearDisplay();
display.setRotation(4);
display.setTextSize(2);
display.setTextColor(BLACK);
// Temperature Celsius
display.setCursor(0,10);
display.println( "Temperature" );
display.setCursor(0,30);
display.print( BMEtempC );
display.println( " C" );
// Humidity
display.setCursor(0,50);
display.println( "Humidity" );
display.setCursor(0,70);
display.print( BMEhumid );
display.println( "%" );
// Altitude Meters
display.setCursor(0,90);
display.println( "Altitude M" );
display.setCursor(0,110);
display.print( BMEaltitudeM );
display.println( " m" );
// Pressure
display.setCursor(0,130);
display.println( "Barometric" );
display.setCursor(0,150);
display.print( BMEpressure );
display.println( "Pa" );
// Refresh
display.refresh();
delay( 100 );
}
// Display CCS811 - eCO2 & tVOC
void isDisplayCCS811() {
// Text Display CCS811
// Clear Display
display.clearDisplay();
display.setRotation(4);
display.setTextSize(2);
display.setTextColor(BLACK);
// eCO2 Concentration
display.setCursor(0,10);
display.println( "eCO2" );
display.setCursor(0,30);
display.print( CCS811CO2 );
display.println( " ppm" );
// tVOC Concentration
display.setCursor(0,60);
display.println( "tVOC" );
display.setCursor(0,80);
display.print( CCS811TVOC );
display.println( " ppb" );
// Refresh
display.refresh();
delay( 100 );
}
// Display Gas Sensors MQ
void isDisplayMQ() {
// Text Display MQ
// Clear Display
display.clearDisplay();
display.setRotation(4);
display.setTextSize(2);
display.setTextColor(BLACK);
// Gas Sensors MQ
display.setCursor(0,10);
display.println( "Gas H2 MQ8" );
display.setCursor(0,30);
display.print( iMQ8ppm );
display.println( " ppm" );
display.setCursor(0,50);
display.println( "Gas CO MQ9" );
display.setCursor(0,70);
display.print( iMQ9ppm );
display.println( " ppm" );
display.setCursor(0,90);
display.println( "Gas CO MQ7" );
display.setCursor(0,110);
display.print( iMQ7ppm );
display.println( " ppm" );
display.setCursor(0,130);
display.println( "BAC MQ3" );
display.setCursor(0,150);
display.print( iMQ3ppm );
display.println( "%" );
// Refresh
display.refresh();
delay( 100 );
}
// EMF Meter (Single Axis)
void isDisplayEMF() {
// Text Display EMF Meter
// Clear Display
display.clearDisplay();
display.setRotation(4);
display.setTextSize(2);
display.setTextColor(BLACK);
// EMF Meter
display.setCursor(0,10);
display.println( "EMF Meter" );
display.setCursor(0,30);
display.print( "EMF: " );
display.println( averageEMF );
display.setCursor(0,50);
display.println( iEMFDis );
display.setCursor(0,70);
display.setTextSize(1);
display.println( "0 1 2 3 4 5 6 7 8 9 10" );
display.setCursor(0,90);
display.drawRect(0, 90, iEMFRect , display.height(), BLACK);
display.fillRect(0, 90, iEMFRect , display.height(), BLACK);
// Refresh
display.refresh();
delay( 100 );
}
// Display PIR Motion
void isDisplayPIR() {
// Text Display PIR
// Clear Display
display.clearDisplay();
display.setRotation(4);
display.setTextSize(2);
display.setTextColor(BLACK);
// PIR Motion
display.setCursor(0,10);
display.println( "PIR Motion" );
display.setCursor(0,30);
display.println( Det );
// Refresh
display.refresh();
delay( 100 );
}
// Display RHT
void isDisplayRHT() {
// Text Display RHT
// Clear Display
display.clearDisplay();
display.setRotation(4);
display.setTextSize(2);
display.setTextColor(BLACK);
// Temperature
display.setCursor(0,10);
display.println( "Temp C" );
display.setCursor(0,30);
display.print( latestTempC );
display.println( "C" );
// Temp F
display.setCursor(0,60);
display.println( "Temp F" );
display.setCursor(0,80);
display.print( latestTempF );
display.println( "F" );
// Humidity
display.setCursor(0,110);
display.println( "Humidity" );
display.setCursor(0,130);
display.print( latestHumidity );
display.println( " %" );
// Refresh
display.refresh();
delay( 100 );
}
// Display Z
void isDisplayZ() {
// Text Display Z
// Clear Display
display.clearDisplay();
display.setRotation(4);
display.setTextSize(3);
display.setTextColor(BLACK);
// Z
display.setCursor(0,10);
display.print( "Z: " );
display.println( z );
// Refresh
display.refresh();
delay( 100 );
}
// Display // SHARP Memory Display - UID void isDisplayUID() { // Text Display // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(3); display.setTextColor(BLACK); // Don Luc Electronics display.setCursor(0,10); display.println( "Don Luc" ); display.setTextSize(2); display.setCursor(0,40); display.println( "Electronics" ); // Version display.setTextSize(3); display.setCursor(0,70); display.println( "Version" ); display.setTextSize(2); display.setCursor(0,100); display.println( sver ); // EEPROM Unique ID display.setTextSize(1); display.setCursor(0,130); display.println( "EEPROM Unique ID" ); display.setTextSize(2); display.setCursor(0,145); display.println( uid ); // Refresh display.refresh(); delay( 100 ); } // Display Environmental void isDisplayEnvironmental(){ // Text Display Environmental // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(1); display.setTextColor(BLACK); // Temperature Celsius display.setCursor(0,0); display.println( "Temperature Celsius" ); display.setCursor(0,10); display.print( BMEtempC ); display.println( " C" ); // Humidity display.setCursor(0,20); display.println( "Humidity" ); display.setCursor(0,30); display.print( BMEhumid ); display.println( "%" ); // Altitude Meters display.setCursor(0,40); display.println( "Altitude Meters" ); display.setCursor(0,50); display.print( BMEaltitudeM ); display.println( " m" ); // Pressure display.setCursor(0,60); display.println( "Barometric Pressure" ); display.setCursor(0,70); display.print( BMEpressure ); display.println( " Pa" ); // eCO2 Concentration display.setCursor(0,80); display.println( "eCO2 Concentration" ); display.setCursor(0,90); display.print( CCS811CO2 ); display.println( " ppm" ); // tVOC Concentration display.setCursor(0,100); display.println( "tVOC Concentration" ); display.setCursor(0,110); display.print( CCS811TVOC ); display.println( " ppb" ); // Date display.setCursor(0,120); display.println( dateRTC ); // Time display.setCursor(0,130); display.println( timeRTC ); // GPS Status display.setCursor(0,140); display.println( GPSStatus ); // Target Latitude display.setCursor(0,150); display.println( TargetLat ); // Target Longitude display.setCursor(0,160); display.println( TargetLon ); // Refresh display.refresh(); delay( 100 ); } // Display Date void isDisplayDate() { // Text Display Date // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(2); display.setTextColor(BLACK); // Date display.setCursor(0,5); display.println( dateRTC ); // Time display.setCursor(0,30); display.println( timeRTC ); // GPS Status display.setCursor(0,60); display.print( "GPS: " ); display.println( GPSStatus ); // Target Latitude display.setCursor(0,80); display.println( "Latitude" ); display.setCursor(0,100); display.println( TargetLat ); // Target Longitude display.setCursor(0,120); display.println( "Longitude" ); display.setCursor(0,140); display.println( TargetLon ); // Refresh display.refresh(); delay( 100 ); } // Display BME280 void isDisplayBME280() { // Text Display BME280 // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(2); display.setTextColor(BLACK); // Temperature Celsius display.setCursor(0,10); display.println( "Temperature" ); display.setCursor(0,30); display.print( BMEtempC ); display.println( " C" ); // Humidity display.setCursor(0,50); display.println( "Humidity" ); display.setCursor(0,70); display.print( BMEhumid ); display.println( "%" ); // Altitude Meters display.setCursor(0,90); display.println( "Altitude M" ); display.setCursor(0,110); display.print( BMEaltitudeM ); display.println( " m" ); // Pressure display.setCursor(0,130); display.println( "Barometric" ); display.setCursor(0,150); display.print( BMEpressure ); display.println( "Pa" ); // Refresh display.refresh(); delay( 100 ); } // Display CCS811 - eCO2 & tVOC void isDisplayCCS811() { // Text Display CCS811 // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(2); display.setTextColor(BLACK); // eCO2 Concentration display.setCursor(0,10); display.println( "eCO2" ); display.setCursor(0,30); display.print( CCS811CO2 ); display.println( " ppm" ); // tVOC Concentration display.setCursor(0,60); display.println( "tVOC" ); display.setCursor(0,80); display.print( CCS811TVOC ); display.println( " ppb" ); // Refresh display.refresh(); delay( 100 ); } // Display Gas Sensors MQ void isDisplayMQ() { // Text Display MQ // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(2); display.setTextColor(BLACK); // Gas Sensors MQ display.setCursor(0,10); display.println( "Gas H2 MQ8" ); display.setCursor(0,30); display.print( iMQ8ppm ); display.println( " ppm" ); display.setCursor(0,50); display.println( "Gas CO MQ9" ); display.setCursor(0,70); display.print( iMQ9ppm ); display.println( " ppm" ); display.setCursor(0,90); display.println( "Gas CO MQ7" ); display.setCursor(0,110); display.print( iMQ7ppm ); display.println( " ppm" ); display.setCursor(0,130); display.println( "BAC MQ3" ); display.setCursor(0,150); display.print( iMQ3ppm ); display.println( "%" ); // Refresh display.refresh(); delay( 100 ); } // EMF Meter (Single Axis) void isDisplayEMF() { // Text Display EMF Meter // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(2); display.setTextColor(BLACK); // EMF Meter display.setCursor(0,10); display.println( "EMF Meter" ); display.setCursor(0,30); display.print( "EMF: " ); display.println( averageEMF ); display.setCursor(0,50); display.println( iEMFDis ); display.setCursor(0,70); display.setTextSize(1); display.println( "0 1 2 3 4 5 6 7 8 9 10" ); display.setCursor(0,90); display.drawRect(0, 90, iEMFRect , display.height(), BLACK); display.fillRect(0, 90, iEMFRect , display.height(), BLACK); // Refresh display.refresh(); delay( 100 ); } // Display PIR Motion void isDisplayPIR() { // Text Display PIR // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(2); display.setTextColor(BLACK); // PIR Motion display.setCursor(0,10); display.println( "PIR Motion" ); display.setCursor(0,30); display.println( Det ); // Refresh display.refresh(); delay( 100 ); } // Display RHT void isDisplayRHT() { // Text Display RHT // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(2); display.setTextColor(BLACK); // Temperature display.setCursor(0,10); display.println( "Temp C" ); display.setCursor(0,30); display.print( latestTempC ); display.println( "C" ); // Temp F display.setCursor(0,60); display.println( "Temp F" ); display.setCursor(0,80); display.print( latestTempF ); display.println( "F" ); // Humidity display.setCursor(0,110); display.println( "Humidity" ); display.setCursor(0,130); display.print( latestHumidity ); display.println( " %" ); // Refresh display.refresh(); delay( 100 ); } // Display Z void isDisplayZ() { // Text Display Z // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(3); display.setTextColor(BLACK); // Z display.setCursor(0,10); display.print( "Z: " ); display.println( z ); // Refresh display.refresh(); delay( 100 ); }
// Display
// SHARP Memory Display - UID
void isDisplayUID() {

    // Text Display 
    // Clear Display
    display.clearDisplay();
    display.setRotation(4);
    display.setTextSize(3);
    display.setTextColor(BLACK);
    // Don Luc Electronics
    display.setCursor(0,10);
    display.println( "Don Luc" );
    display.setTextSize(2);
    display.setCursor(0,40);
    display.println( "Electronics" );
    // Version
    display.setTextSize(3);
    display.setCursor(0,70);
    display.println( "Version" );
    display.setTextSize(2);
    display.setCursor(0,100);   
    display.println( sver );
    // EEPROM Unique ID
    display.setTextSize(1);
    display.setCursor(0,130);
    display.println( "EEPROM Unique ID" );
    display.setTextSize(2);
    display.setCursor(0,145);
    display.println( uid );
    // Refresh
    display.refresh();
    delay( 100 );
    
}
// Display Environmental
void isDisplayEnvironmental(){

    // Text Display Environmental
    // Clear Display
    display.clearDisplay();
    display.setRotation(4);
    display.setTextSize(1);
    display.setTextColor(BLACK);
    // Temperature Celsius
    display.setCursor(0,0);
    display.println( "Temperature Celsius" );
    display.setCursor(0,10);
    display.print( BMEtempC );
    display.println( " C" );
    // Humidity
    display.setCursor(0,20);
    display.println( "Humidity" );
    display.setCursor(0,30);
    display.print( BMEhumid );
    display.println( "%" );
    // Altitude Meters
    display.setCursor(0,40);
    display.println( "Altitude Meters" );
    display.setCursor(0,50);
    display.print( BMEaltitudeM );
    display.println( " m" );
    // Pressure
    display.setCursor(0,60);    
    display.println( "Barometric Pressure" );
    display.setCursor(0,70);
    display.print( BMEpressure );
    display.println( " Pa" );
    // eCO2 Concentration
    display.setCursor(0,80);
    display.println( "eCO2 Concentration" );
    display.setCursor(0,90);
    display.print( CCS811CO2 );
    display.println( " ppm" );
    // tVOC Concentration
    display.setCursor(0,100);
    display.println( "tVOC Concentration" );
    display.setCursor(0,110);
    display.print( CCS811TVOC );
    display.println( " ppb" );
    // Date
    display.setCursor(0,120);
    display.println( dateRTC );
    // Time
    display.setCursor(0,130);
    display.println( timeRTC );
    // GPS Status
    display.setCursor(0,140);
    display.println( GPSStatus );
    // Target Latitude
    display.setCursor(0,150);
    display.println( TargetLat );
    // Target Longitude
    display.setCursor(0,160);
    display.println( TargetLon );
    // Refresh
    display.refresh();
    delay( 100 );

}
// Display Date
void isDisplayDate() {

    // Text Display Date
    // Clear Display
    display.clearDisplay();
    display.setRotation(4);
    display.setTextSize(2);
    display.setTextColor(BLACK);
    // Date
    display.setCursor(0,5);
    display.println( dateRTC );
    // Time
    display.setCursor(0,30);
    display.println( timeRTC );
    // GPS Status
    display.setCursor(0,60);
    display.print( "GPS: " );
    display.println( GPSStatus );
    // Target Latitude
    display.setCursor(0,80);
    display.println( "Latitude" );
    display.setCursor(0,100);
    display.println( TargetLat );
    // Target Longitude
    display.setCursor(0,120);
    display.println( "Longitude" );
    display.setCursor(0,140);
    display.println( TargetLon );
    // Refresh
    display.refresh();
    delay( 100 );

}
// Display BME280
void isDisplayBME280() {

     // Text Display BME280
    // Clear Display
    display.clearDisplay();
    display.setRotation(4);
    display.setTextSize(2);
    display.setTextColor(BLACK);
    // Temperature Celsius
    display.setCursor(0,10);
    display.println( "Temperature" );
    display.setCursor(0,30);
    display.print( BMEtempC );
    display.println( " C" );
    // Humidity
    display.setCursor(0,50);
    display.println( "Humidity" );
    display.setCursor(0,70);
    display.print( BMEhumid );
    display.println( "%" );
    // Altitude Meters
    display.setCursor(0,90);
    display.println( "Altitude M" );
    display.setCursor(0,110);
    display.print( BMEaltitudeM );
    display.println( " m" );
    // Pressure
    display.setCursor(0,130);    
    display.println( "Barometric" );
    display.setCursor(0,150);
    display.print( BMEpressure );
    display.println( "Pa" );
    // Refresh
    display.refresh();
    delay( 100 );

}
// Display CCS811 - eCO2 & tVOC
void isDisplayCCS811() {

    // Text Display CCS811
    // Clear Display
    display.clearDisplay();
    display.setRotation(4);
    display.setTextSize(2);
    display.setTextColor(BLACK);
    // eCO2 Concentration
    display.setCursor(0,10);
    display.println( "eCO2" );
    display.setCursor(0,30);
    display.print( CCS811CO2 );
    display.println( " ppm" );
    // tVOC Concentration
    display.setCursor(0,60);
    display.println( "tVOC" );
    display.setCursor(0,80);
    display.print( CCS811TVOC );
    display.println( " ppb" );
    // Refresh
    display.refresh();
    delay( 100 );

}
// Display Gas Sensors MQ
void isDisplayMQ() {

    // Text Display MQ
    // Clear Display
    display.clearDisplay();
    display.setRotation(4);
    display.setTextSize(2);
    display.setTextColor(BLACK);
    // Gas Sensors MQ
    display.setCursor(0,10);
    display.println( "Gas H2 MQ8" );
    display.setCursor(0,30);
    display.print( iMQ8ppm );
    display.println( " ppm" );
    display.setCursor(0,50);
    display.println( "Gas CO MQ9" );
    display.setCursor(0,70);
    display.print( iMQ9ppm );
    display.println( " ppm" );
    display.setCursor(0,90);
    display.println( "Gas CO MQ7" );
    display.setCursor(0,110);
    display.print( iMQ7ppm );
    display.println( " ppm" );
    display.setCursor(0,130);
    display.println( "BAC MQ3" );
    display.setCursor(0,150);
    display.print( iMQ3ppm );
    display.println( "%" );
    // Refresh
    display.refresh();
    delay( 100 );

}
// EMF Meter (Single Axis)
void isDisplayEMF() {

    // Text Display EMF Meter
    // Clear Display
    display.clearDisplay();
    display.setRotation(4);
    display.setTextSize(2);
    display.setTextColor(BLACK);
    // EMF Meter
    display.setCursor(0,10);
    display.println( "EMF Meter" );
    display.setCursor(0,30);
    display.print( "EMF: " );
    display.println( averageEMF );
    display.setCursor(0,50);
    display.println( iEMFDis );
    display.setCursor(0,70);
    display.setTextSize(1);
    display.println( "0  1 2 3 4 5 6 7 8 9  10" );
    display.setCursor(0,90);
    display.drawRect(0, 90, iEMFRect , display.height(), BLACK);
    display.fillRect(0, 90, iEMFRect , display.height(), BLACK);
    // Refresh
    display.refresh();
    delay( 100 );

}
// Display PIR Motion
void isDisplayPIR() {

    // Text Display PIR
    // Clear Display
    display.clearDisplay();
    display.setRotation(4);
    display.setTextSize(2);
    display.setTextColor(BLACK);
    // PIR Motion
    display.setCursor(0,10);
    display.println( "PIR Motion" );
    display.setCursor(0,30);
    display.println( Det );
    // Refresh
    display.refresh();
    delay( 100 );

}
// Display RHT
void isDisplayRHT() {

    // Text Display RHT
    // Clear Display
    display.clearDisplay();
    display.setRotation(4);
    display.setTextSize(2);
    display.setTextColor(BLACK);
    // Temperature
    display.setCursor(0,10);
    display.println( "Temp C" );
    display.setCursor(0,30);
    display.print( latestTempC );
    display.println( "C" );
    // Temp F
    display.setCursor(0,60);
    display.println( "Temp F" );
    display.setCursor(0,80);
    display.print( latestTempF );
    display.println( "F" );
    // Humidity
    display.setCursor(0,110);
    display.println( "Humidity" );
    display.setCursor(0,130);
    display.print( latestHumidity );
    display.println( " %" );    
    // Refresh
    display.refresh();
    delay( 100 );

}
// Display Z
void isDisplayZ() {

    // Text Display Z
    // Clear Display
    display.clearDisplay();
    display.setRotation(4);
    display.setTextSize(3);
    display.setTextColor(BLACK);
    // Z
    display.setCursor(0,10);
    display.print( "Z: " );
    display.println( z );
    // Refresh
    display.refresh();
    delay( 100 );

}

getEEPROM.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// EEPROM
// isUID EEPROM Unique ID
void isUID()
{
// Is Unit ID
uid = "";
for (int x = 0; x < 5; x++)
{
uid = uid + char(EEPROM.read(x));
}
}
// EEPROM // isUID EEPROM Unique ID void isUID() { // Is Unit ID uid = ""; for (int x = 0; x < 5; x++) { uid = uid + char(EEPROM.read(x)); } }
// EEPROM
// isUID EEPROM Unique ID
void isUID()
{
  
  // Is Unit ID
  uid = "";
  for (int x = 0; x < 5; x++)
  {
    uid = uid + char(EEPROM.read(x));
  }
  
}

getEMF.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// EMF Meter (Single Axis)
// Setup EMF Meter
void isSetupEMF() {
// EMF Meter (Single Axis)
pinMode( iEMF, OUTPUT );
for (int i = 0; i < NUMREADINGS; i++){
readings[ i ] = 0; // Initialize all the readings to 0
}
}
// EMF Meter
void isEMF() {
// Probe EMF Meter
// Take a reading from the probe
valEMF = analogRead( iEMF );
// If the reading isn't zero, proceed
if( valEMF >= 1 ){
// Turn any reading higher than the senseLimit value into the senseLimit value
valEMF = constrain( valEMF, 1, senseLimit );
// Remap the constrained value within a 1 to 1023 range
valEMF = map( valEMF, 1, senseLimit, 1, 1023 );
// Subtract the last reading
totalEMF -= readings[ indexEMF ];
// Read from the sensor
readings[ indexEMF ] = valEMF;
// Add the reading to the total
totalEMF += readings[ indexEMF ];
// Advance to the next index
indexEMF = ( indexEMF + 1 );
// If we're at the end of the array...
if ( indexEMF >= NUMREADINGS ) {
// Wrap around to the beginning
indexEMF = 0;
}
// Calculate the average
averageEMF = totalEMF / NUMREADINGS;
iEMFDis = averageEMF;
iEMFRect = map( averageEMF, 1, 1023, 1, 144 );
}
else
{
averageEMF = 0;
}
}
// EMF Meter (Single Axis) // Setup EMF Meter void isSetupEMF() { // EMF Meter (Single Axis) pinMode( iEMF, OUTPUT ); for (int i = 0; i < NUMREADINGS; i++){ readings[ i ] = 0; // Initialize all the readings to 0 } } // EMF Meter void isEMF() { // Probe EMF Meter // Take a reading from the probe valEMF = analogRead( iEMF ); // If the reading isn't zero, proceed if( valEMF >= 1 ){ // Turn any reading higher than the senseLimit value into the senseLimit value valEMF = constrain( valEMF, 1, senseLimit ); // Remap the constrained value within a 1 to 1023 range valEMF = map( valEMF, 1, senseLimit, 1, 1023 ); // Subtract the last reading totalEMF -= readings[ indexEMF ]; // Read from the sensor readings[ indexEMF ] = valEMF; // Add the reading to the total totalEMF += readings[ indexEMF ]; // Advance to the next index indexEMF = ( indexEMF + 1 ); // If we're at the end of the array... if ( indexEMF >= NUMREADINGS ) { // Wrap around to the beginning indexEMF = 0; } // Calculate the average averageEMF = totalEMF / NUMREADINGS; iEMFDis = averageEMF; iEMFRect = map( averageEMF, 1, 1023, 1, 144 ); } else { averageEMF = 0; } }
// EMF Meter (Single Axis)
// Setup EMF Meter
void isSetupEMF() {

  // EMF Meter (Single Axis)
  pinMode( iEMF, OUTPUT );
  for (int i = 0; i < NUMREADINGS; i++){
    readings[ i ] = 0;     // Initialize all the readings to 0
  }
  
}
// EMF Meter
void isEMF() {

  // Probe EMF Meter
  // Take a reading from the probe
  valEMF = analogRead( iEMF );

  // If the reading isn't zero, proceed
  if( valEMF >= 1 ){

    // Turn any reading higher than the senseLimit value into the senseLimit value
    valEMF = constrain( valEMF, 1, senseLimit );
    // Remap the constrained value within a 1 to 1023 range
    valEMF = map( valEMF, 1, senseLimit, 1, 1023 );
    
    // Subtract the last reading
    totalEMF -= readings[ indexEMF ];
    // Read from the sensor
    readings[ indexEMF ] = valEMF;
    // Add the reading to the total
    totalEMF += readings[ indexEMF ];
    // Advance to the next index
    indexEMF = ( indexEMF + 1 );
    
    // If we're at the end of the array...
    if ( indexEMF >= NUMREADINGS ) {

      // Wrap around to the beginning
      indexEMF = 0;
      
    }  

    // Calculate the average
    averageEMF = totalEMF / NUMREADINGS;

    iEMFDis = averageEMF;
    iEMFRect = map( averageEMF, 1, 1023, 1, 144 );

  }
  else
  {

    averageEMF = 0;
    
  }
  
}

getGPS.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// GPS Receiver
// Setup GPS
void setupGPS() {
// Setup GPS
tGPS.begin( 9600 , SERIAL_8N1, gpsRXPIN, gpsTXPIN );
}
// isGPS
void isGPS(){
// Receives NEMA data from GPS receiver
// This sketch displays information every time a new sentence is correctly encoded.
while ( tGPS.available() > 0)
if (gps.encode( tGPS.read() ))
{
displayInfo();
}
if (millis() > 5000 && gps.charsProcessed() < 10)
{
while(true);
}
}
// GPS Vector Pointer Target
void displayInfo(){
// Location
if (gps.location.isValid())
{
TargetLat = gps.location.lat();
TargetLon = gps.location.lng();
GPSStatus = 2;
}
else
{
GPSStatus = 0;
}
}
// GPS Receiver // Setup GPS void setupGPS() { // Setup GPS tGPS.begin( 9600 , SERIAL_8N1, gpsRXPIN, gpsTXPIN ); } // isGPS void isGPS(){ // Receives NEMA data from GPS receiver // This sketch displays information every time a new sentence is correctly encoded. while ( tGPS.available() > 0) if (gps.encode( tGPS.read() )) { displayInfo(); } if (millis() > 5000 && gps.charsProcessed() < 10) { while(true); } } // GPS Vector Pointer Target void displayInfo(){ // Location if (gps.location.isValid()) { TargetLat = gps.location.lat(); TargetLon = gps.location.lng(); GPSStatus = 2; } else { GPSStatus = 0; } }
// GPS Receiver
// Setup GPS
void setupGPS() {

  // Setup GPS
  tGPS.begin(  9600 , SERIAL_8N1, gpsRXPIN, gpsTXPIN );
  
}
// isGPS
void isGPS(){

  // Receives NEMA data from GPS receiver
  // This sketch displays information every time a new sentence is correctly encoded.
  while ( tGPS.available() > 0)
    if (gps.encode( tGPS.read() ))
    {
     displayInfo();
    }
  
  if (millis() > 5000 && gps.charsProcessed() < 10)
  {
    while(true);
  }

}
// GPS Vector Pointer Target
void displayInfo(){

  // Location
  if (gps.location.isValid())
  {
    
    TargetLat = gps.location.lat();
    TargetLon = gps.location.lng();
    GPSStatus = 2;
    
  }
  else
  {

    GPSStatus = 0;
    
  }

}

getGasSensorMQ.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Gas Sensors MQ
// Gas Sensor
void isGasSensor() {
// Read in analog value from each gas sensors
// Hydrogen Gas Sensor - MQ-8
iMQ8Raw = analogRead( iMQ8 );
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
iMQ9Raw = analogRead( iMQ9 );
// Carbon Monoxide Gas Sensor - MQ-7
iMQ7Raw = analogRead( iMQ7 );
// Alcohol Gas Sensor - MQ-3
iMQ3Raw = analogRead( iMQ3 );
// Caclulate the PPM of each gas sensors
// Hydrogen Gas Sensor - MQ-8
iMQ8ppm = isMQ8( iMQ8Raw );
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
iMQ9ppm = isMQ9( iMQ9Raw );
// Carbon Monoxide Gas Sensor - MQ-7
iMQ7ppm = isMQ7( iMQ7Raw );
// Alcohol Gas Sensor - MQ-3
iMQ3ppm = isMQ3( iMQ3Raw );
}
// Hydrogen Gas Sensor - MQ-8 - PPM
int isMQ8(double rawValue) {
// RvRo
double RvRo = rawValue * (3.3 / 1023);
return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0])));
}
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int isMQ9(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double ppm = 3.027*exp(1.0698*( RvRo ));
return ppm;
}
// Carbon Monoxide Gas Sensor - MQ-7
int isMQ7(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double ppm = 3.027*exp(1.0698*( RvRo ));
return ppm;
}
// Alcohol Gas Sensor - MQ-3
int isMQ3(double rawValue) {
double RvRo = rawValue * 3.3 / 4095;
double bac = RvRo * 0.21;
return bac;
}
// Gas Sensors MQ // Gas Sensor void isGasSensor() { // Read in analog value from each gas sensors // Hydrogen Gas Sensor - MQ-8 iMQ8Raw = analogRead( iMQ8 ); // Carbon Monoxide & Flammable Gas Sensor - MQ-9 iMQ9Raw = analogRead( iMQ9 ); // Carbon Monoxide Gas Sensor - MQ-7 iMQ7Raw = analogRead( iMQ7 ); // Alcohol Gas Sensor - MQ-3 iMQ3Raw = analogRead( iMQ3 ); // Caclulate the PPM of each gas sensors // Hydrogen Gas Sensor - MQ-8 iMQ8ppm = isMQ8( iMQ8Raw ); // Carbon Monoxide & Flammable Gas Sensor - MQ-9 iMQ9ppm = isMQ9( iMQ9Raw ); // Carbon Monoxide Gas Sensor - MQ-7 iMQ7ppm = isMQ7( iMQ7Raw ); // Alcohol Gas Sensor - MQ-3 iMQ3ppm = isMQ3( iMQ3Raw ); } // Hydrogen Gas Sensor - MQ-8 - PPM int isMQ8(double rawValue) { // RvRo double RvRo = rawValue * (3.3 / 1023); return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0]))); } // Carbon Monoxide & Flammable Gas Sensor - MQ-9 int isMQ9(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double ppm = 3.027*exp(1.0698*( RvRo )); return ppm; } // Carbon Monoxide Gas Sensor - MQ-7 int isMQ7(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double ppm = 3.027*exp(1.0698*( RvRo )); return ppm; } // Alcohol Gas Sensor - MQ-3 int isMQ3(double rawValue) { double RvRo = rawValue * 3.3 / 4095; double bac = RvRo * 0.21; return bac; }
// Gas Sensors MQ
// Gas Sensor
void isGasSensor() {

  // Read in analog value from each gas sensors
  
  // Hydrogen Gas Sensor - MQ-8
  iMQ8Raw = analogRead( iMQ8 );

  // Carbon Monoxide & Flammable Gas Sensor - MQ-9
  iMQ9Raw = analogRead( iMQ9 );  

  // Carbon Monoxide Gas Sensor - MQ-7
  iMQ7Raw = analogRead( iMQ7 );

  // Alcohol Gas Sensor - MQ-3
  iMQ3Raw = analogRead( iMQ3 );
  
  // Caclulate the PPM of each gas sensors

  // Hydrogen Gas Sensor - MQ-8
  iMQ8ppm = isMQ8( iMQ8Raw ); 

  // Carbon Monoxide & Flammable Gas Sensor - MQ-9
  iMQ9ppm = isMQ9( iMQ9Raw ); 

  // Carbon Monoxide Gas Sensor - MQ-7
  iMQ7ppm = isMQ7( iMQ7Raw ); 

  // Alcohol Gas Sensor - MQ-3
  iMQ3ppm = isMQ3( iMQ3Raw ); 
  
}
// Hydrogen Gas Sensor - MQ-8 - PPM
int isMQ8(double rawValue) {

  // RvRo
  double RvRo = rawValue * (3.3 / 1023);

  return (pow(4.7,( ((log(RvRo)-H2Curve[1])/H2Curve[2]) + H2Curve[0])));
  
}
// Carbon Monoxide & Flammable Gas Sensor - MQ-9
int isMQ9(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double ppm = 3.027*exp(1.0698*( RvRo ));
  return ppm;
  
}
// Carbon Monoxide Gas Sensor - MQ-7
int isMQ7(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double ppm = 3.027*exp(1.0698*( RvRo ));
  return ppm;
  
}
// Alcohol Gas Sensor - MQ-3
int isMQ3(double rawValue) {

  double RvRo = rawValue * 3.3 / 4095;

  double bac = RvRo * 0.21;
  return bac;
  
}

getPIR.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// PIR Motion
// Setup PIR
void setupPIR() {
// Setup PIR Montion
pinMode(iMotion, INPUT_PULLUP);
}
// isPIR Motion
void isPIR() {
// Proximity
proximity = digitalRead(iMotion);
if (proximity == LOW)
{
// PIR Motion Sensor's LOW, Motion is detected
Det = "Motion Yes";
}
else
{
// PIR Motion Sensor's HIGH
Det = "No";
}
}
// PIR Motion // Setup PIR void setupPIR() { // Setup PIR Montion pinMode(iMotion, INPUT_PULLUP); } // isPIR Motion void isPIR() { // Proximity proximity = digitalRead(iMotion); if (proximity == LOW) { // PIR Motion Sensor's LOW, Motion is detected Det = "Motion Yes"; } else { // PIR Motion Sensor's HIGH Det = "No"; } }
// PIR Motion
// Setup PIR
void setupPIR() {

  // Setup PIR Montion
  pinMode(iMotion, INPUT_PULLUP);
  
}
// isPIR Motion
void isPIR() {

  // Proximity
  proximity = digitalRead(iMotion);
  if (proximity == LOW) 
  {

    // PIR Motion Sensor's LOW, Motion is detected
    Det = "Motion Yes";
    
  }
  else
  {

    // PIR Motion Sensor's HIGH
    Det = "No";
    
  }
  
}

getRHT.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// RHT03 Humidity and Temperature Sensor
// setup RTH03 Humidity and Temperature Sensor
void setupRTH03() {
// RHT03 Humidity and Temperature Sensor
// Call rht.begin() to initialize the sensor and our data pin
rht.begin(RHT03_DATA_PIN);
}
// RHT03 Humidity and Temperature Sensor
void isRHT03(){
// Call rht.update() to get new humidity and temperature values from the sensor.
int updateRet = rht.update();
// The humidity(), tempC(), and tempF() functions can be called -- after
// a successful update() -- to get the last humidity and temperature value
latestHumidity = rht.humidity();
latestTempC = rht.tempC();
latestTempF = rht.tempF();
}
// RHT03 Humidity and Temperature Sensor // setup RTH03 Humidity and Temperature Sensor void setupRTH03() { // RHT03 Humidity and Temperature Sensor // Call rht.begin() to initialize the sensor and our data pin rht.begin(RHT03_DATA_PIN); } // RHT03 Humidity and Temperature Sensor void isRHT03(){ // Call rht.update() to get new humidity and temperature values from the sensor. int updateRet = rht.update(); // The humidity(), tempC(), and tempF() functions can be called -- after // a successful update() -- to get the last humidity and temperature value latestHumidity = rht.humidity(); latestTempC = rht.tempC(); latestTempF = rht.tempF(); }
// RHT03 Humidity and Temperature Sensor
// setup RTH03 Humidity and Temperature Sensor
void setupRTH03() {

  // RHT03 Humidity and Temperature Sensor
  // Call rht.begin() to initialize the sensor and our data pin
  rht.begin(RHT03_DATA_PIN);
  
}
// RHT03 Humidity and Temperature Sensor
void isRHT03(){

  // Call rht.update() to get new humidity and temperature values from the sensor.
  int updateRet = rht.update();

  // The humidity(), tempC(), and tempF() functions can be called -- after 
  // a successful update() -- to get the last humidity and temperature value 
  latestHumidity = rht.humidity();
  latestTempC = rht.tempC();
  latestTempF = rht.tempF();
  
}

getRTC.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Date & Time
// PCF8523 Precision RTC
void setupRTC() {
// Date & Time
// pcf8523 Precision RTC
if (! rtc.begin()) {
while (1);
}
if (! rtc.initialized()) {
// Following line sets the RTC to the date & time this sketch was compiled
rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
// This line sets the RTC with an explicit date & time, for example to set
// January 21, 2014 at 3am you would call:
// rtc.adjust(DateTime(2018, 9, 29, 12, 17, 0));
}
}
// Date and Time RTC
void isRTC () {
// Date and Time
dateRTC = "";
timeRTC = "";
DateTime now = rtc.now();
// Date
dateRTC = now.year(), DEC;
dateRTC = dateRTC + "/";
dateRTC = dateRTC + now.month(), DEC;
dateRTC = dateRTC + "/";
dateRTC = dateRTC + now.day(), DEC;
// Time
timeRTC = now.hour(), DEC;
timeRTC = timeRTC + ":";
timeRTC = timeRTC + now.minute(), DEC;
timeRTC = timeRTC + ":";
timeRTC = timeRTC + now.second(), DEC;
}
// Date & Time // PCF8523 Precision RTC void setupRTC() { // Date & Time // pcf8523 Precision RTC if (! rtc.begin()) { while (1); } if (! rtc.initialized()) { // Following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: // rtc.adjust(DateTime(2018, 9, 29, 12, 17, 0)); } } // Date and Time RTC void isRTC () { // Date and Time dateRTC = ""; timeRTC = ""; DateTime now = rtc.now(); // Date dateRTC = now.year(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.month(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.day(), DEC; // Time timeRTC = now.hour(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.minute(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.second(), DEC; }
// Date & Time
// PCF8523 Precision RTC 
void setupRTC() {

  // Date & Time
  // pcf8523 Precision RTC   
  if (! rtc.begin()) {
    while (1);
  }  
  
  if (! rtc.initialized()) {
    // Following line sets the RTC to the date & time this sketch was compiled
    rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
    // This line sets the RTC with an explicit date & time, for example to set
    // January 21, 2014 at 3am you would call:
    // rtc.adjust(DateTime(2018, 9, 29, 12, 17, 0));
  }
  
}
// Date and Time RTC
void isRTC () {

  // Date and Time
  dateRTC = "";
  timeRTC = "";
  DateTime now = rtc.now();
  
  // Date
  dateRTC = now.year(), DEC; 
  dateRTC = dateRTC + "/";
  dateRTC = dateRTC + now.month(), DEC;
  dateRTC = dateRTC + "/";
  dateRTC = dateRTC + now.day(), DEC;
  
  // Time
  timeRTC = now.hour(), DEC;
  timeRTC = timeRTC + ":";
  timeRTC = timeRTC + now.minute(), DEC;
  timeRTC = timeRTC + ":";
  timeRTC = timeRTC + now.second(), DEC;
  
}

getRot.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Rotary Switch
// isRot - iRotVal - Value
void isRot() {
// Rotary Switch
z = analogRead( iRotNum );
x = map(z, 0, 4095, 0, 9);
iRotVal = map(z, 0, 4095, 0, 10);
// Range Value
switch ( iRotVal ) {
case 0:
// Display Environmental
isDisplayEnvironmental();
break;
case 1:
// Display Date
isDisplayDate();
break;
case 2:
// Display BME280
isDisplayBME280();
break;
case 3:
// RHT03 Humidity and Temperature Sensor
isDisplayRHT();
break;
case 4:
// Display CCS811 - eCO2 & tVOC
isDisplayCCS811();
break;
case 5:
// Display Gas Sensors MQ
isDisplayMQ();
break;
case 6:
// EMF Meter (Single Axis)
isDisplayEMF();
break;
case 7:
// Display PIR Motion
isDisplayPIR();
break;
case 8:
// Display UID
isDisplayUID();
break;
case 9:
// Z
isDisplayZ();
break;
}
}
// Rotary Switch // isRot - iRotVal - Value void isRot() { // Rotary Switch z = analogRead( iRotNum ); x = map(z, 0, 4095, 0, 9); iRotVal = map(z, 0, 4095, 0, 10); // Range Value switch ( iRotVal ) { case 0: // Display Environmental isDisplayEnvironmental(); break; case 1: // Display Date isDisplayDate(); break; case 2: // Display BME280 isDisplayBME280(); break; case 3: // RHT03 Humidity and Temperature Sensor isDisplayRHT(); break; case 4: // Display CCS811 - eCO2 & tVOC isDisplayCCS811(); break; case 5: // Display Gas Sensors MQ isDisplayMQ(); break; case 6: // EMF Meter (Single Axis) isDisplayEMF(); break; case 7: // Display PIR Motion isDisplayPIR(); break; case 8: // Display UID isDisplayUID(); break; case 9: // Z isDisplayZ(); break; } }
// Rotary Switch
// isRot - iRotVal - Value
void isRot() {

  // Rotary Switch
  z = analogRead( iRotNum );
  x = map(z, 0, 4095, 0, 9);
  iRotVal = map(z, 0, 4095, 0, 10);

  // Range Value
  switch ( iRotVal ) {
    case 0:

      // Display Environmental
      isDisplayEnvironmental();
      
      break;
    case 1:

      // Display Date
      isDisplayDate();
      
      break;
    case 2:

      // Display BME280
      isDisplayBME280();
      
      break;  
    case 3:

      // RHT03 Humidity and Temperature Sensor
      isDisplayRHT();
      
      break;
    case 4:

      // Display CCS811 - eCO2 & tVOC
      isDisplayCCS811();
      
      break;
    case 5:

      // Display Gas Sensors MQ
      isDisplayMQ();
      
      break;       
    case 6:

      // EMF Meter (Single Axis)
      isDisplayEMF();
      
      break; 
    case 7:
         
      // Display PIR Motion
      isDisplayPIR();
      
      break; 
    case 8:

      // Display UID
      isDisplayUID();
      
      break;
    case 9:

      // Z
      isDisplayZ();
      
      break;
  }

}

getSD.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// microSD Card
// microSD Setup
void setupSD() {
// microSD Card
pinMode( chipSelect , OUTPUT );
if(!SD.begin( chipSelect )){
;
return;
}
uint8_t cardType = SD.cardType();
if(cardType == CARD_NONE){
;
return;
}
//Serial.print("SD Card Type: ");
if(cardType == CARD_MMC){
;
} else if(cardType == CARD_SD){
;
} else if(cardType == CARD_SDHC){
;
} else {
;
}
uint64_t cardSize = SD.cardSize() / (1024 * 1024);
}
// microSD Card
void isSD() {
zzzzzz = "";
// EEPROM Unique ID|Version|Date|Time|GPS Status|Target Latitude|Target Longitude|Temperature Celsius|Humidity|Altitude Meters|Barometric Pressure|Latest Temp C|Latest Temp F|Latest Humidity|eCO2 Concentration|tVOC Concentration|H2 Gas Sensor MQ-8|CO Gas Sensor MQ-9|CO Gas Sensor MQ-7|Alcohol Gas Sensor MQ-3|EMF Meter (Single Axis)|PIR Motion
zzzzzz = uid + "|" + sver + "|" + dateRTC + "|" + timeRTC + "|" + GPSStatus + "|" + TargetLat + "|" + TargetLon + "|" + BMEtempC + "|" + BMEhumid + "|" + BMEaltitudeM + "|" + BMEpressure + "|" + latestTempC + "|" + latestTempF + "|" + latestHumidity + "|" + CCS811CO2 + "|" + CCS811TVOC + "|" + iMQ8ppm + "|" + iMQ9ppm + "|" + iMQ7ppm + "|" + iMQ9ppm + "|" + iMQ3ppm + "|" + averageEMF + "|" + Det + "|\r";
char msg[zzzzzz.length() + 1];
zzzzzz.toCharArray(msg, zzzzzz.length() + 1);
appendFile(SD, "/espdata.txt", msg );
}
// List Dir
void listDir(fs::FS &fs, const char * dirname, uint8_t levels){
dirname;
File root = fs.open(dirname);
if(!root){
return;
}
if(!root.isDirectory()){
return;
}
File file = root.openNextFile();
while(file){
if(file.isDirectory()){
file.name();
if(levels){
listDir(fs, file.name(), levels -1);
}
} else {
file.name();
file.size();
}
file = root.openNextFile();
}
}
// Write File
void writeFile(fs::FS &fs, const char * path, const char * message){
path;
File file = fs.open(path, FILE_WRITE);
if(!file){
return;
}
if(file.print(message)){
;
} else {
;
}
file.close();
}
// Append File
void appendFile(fs::FS &fs, const char * path, const char * message){
path;
File file = fs.open(path, FILE_APPEND);
if(!file){
return;
}
if(file.print(message)){
;
} else {
;
}
file.close();
}
// microSD Card // microSD Setup void setupSD() { // microSD Card pinMode( chipSelect , OUTPUT ); if(!SD.begin( chipSelect )){ ; return; } uint8_t cardType = SD.cardType(); if(cardType == CARD_NONE){ ; return; } //Serial.print("SD Card Type: "); if(cardType == CARD_MMC){ ; } else if(cardType == CARD_SD){ ; } else if(cardType == CARD_SDHC){ ; } else { ; } uint64_t cardSize = SD.cardSize() / (1024 * 1024); } // microSD Card void isSD() { zzzzzz = ""; // EEPROM Unique ID|Version|Date|Time|GPS Status|Target Latitude|Target Longitude|Temperature Celsius|Humidity|Altitude Meters|Barometric Pressure|Latest Temp C|Latest Temp F|Latest Humidity|eCO2 Concentration|tVOC Concentration|H2 Gas Sensor MQ-8|CO Gas Sensor MQ-9|CO Gas Sensor MQ-7|Alcohol Gas Sensor MQ-3|EMF Meter (Single Axis)|PIR Motion zzzzzz = uid + "|" + sver + "|" + dateRTC + "|" + timeRTC + "|" + GPSStatus + "|" + TargetLat + "|" + TargetLon + "|" + BMEtempC + "|" + BMEhumid + "|" + BMEaltitudeM + "|" + BMEpressure + "|" + latestTempC + "|" + latestTempF + "|" + latestHumidity + "|" + CCS811CO2 + "|" + CCS811TVOC + "|" + iMQ8ppm + "|" + iMQ9ppm + "|" + iMQ7ppm + "|" + iMQ9ppm + "|" + iMQ3ppm + "|" + averageEMF + "|" + Det + "|\r"; char msg[zzzzzz.length() + 1]; zzzzzz.toCharArray(msg, zzzzzz.length() + 1); appendFile(SD, "/espdata.txt", msg ); } // List Dir void listDir(fs::FS &fs, const char * dirname, uint8_t levels){ dirname; File root = fs.open(dirname); if(!root){ return; } if(!root.isDirectory()){ return; } File file = root.openNextFile(); while(file){ if(file.isDirectory()){ file.name(); if(levels){ listDir(fs, file.name(), levels -1); } } else { file.name(); file.size(); } file = root.openNextFile(); } } // Write File void writeFile(fs::FS &fs, const char * path, const char * message){ path; File file = fs.open(path, FILE_WRITE); if(!file){ return; } if(file.print(message)){ ; } else { ; } file.close(); } // Append File void appendFile(fs::FS &fs, const char * path, const char * message){ path; File file = fs.open(path, FILE_APPEND); if(!file){ return; } if(file.print(message)){ ; } else { ; } file.close(); }
// microSD Card
// microSD Setup
void setupSD() {

    // microSD Card
    pinMode( chipSelect , OUTPUT );
    if(!SD.begin( chipSelect )){
        ;  
        return;
    }
    
    uint8_t cardType = SD.cardType();

    if(cardType == CARD_NONE){
        ; 
        return;
    }

    //Serial.print("SD Card Type: ");
    if(cardType == CARD_MMC){
        ; 
    } else if(cardType == CARD_SD){
        ; 
    } else if(cardType == CARD_SDHC){
        ; 
    } else {
        ; 
    } 

    uint64_t cardSize = SD.cardSize() / (1024 * 1024);
  
}
// microSD Card
void isSD() {

  zzzzzz = "";

  // EEPROM Unique ID|Version|Date|Time|GPS Status|Target Latitude|Target Longitude|Temperature Celsius|Humidity|Altitude Meters|Barometric Pressure|Latest Temp C|Latest Temp F|Latest Humidity|eCO2 Concentration|tVOC Concentration|H2 Gas Sensor MQ-8|CO Gas Sensor MQ-9|CO Gas Sensor MQ-7|Alcohol Gas Sensor MQ-3|EMF Meter (Single Axis)|PIR Motion
  zzzzzz = uid + "|" + sver + "|" + dateRTC + "|" + timeRTC + "|" + GPSStatus + "|" + TargetLat + "|" + TargetLon + "|" + BMEtempC + "|" + BMEhumid + "|" + BMEaltitudeM + "|" + BMEpressure + "|" + latestTempC + "|" + latestTempF + "|" + latestHumidity + "|" + CCS811CO2 + "|" + CCS811TVOC + "|" + iMQ8ppm + "|" + iMQ9ppm + "|" + iMQ7ppm + "|" + iMQ9ppm + "|" + iMQ3ppm + "|" + averageEMF + "|" + Det + "|\r";

  char msg[zzzzzz.length() + 1];

  zzzzzz.toCharArray(msg, zzzzzz.length() + 1);

  appendFile(SD, "/espdata.txt", msg );
  
}
// List Dir
void listDir(fs::FS &fs, const char * dirname, uint8_t levels){
    
    dirname;
    
    File root = fs.open(dirname);
    
    if(!root){
        return;
    }
    
    if(!root.isDirectory()){
        return;
    }

    File file = root.openNextFile();
    
    while(file){
        if(file.isDirectory()){
            file.name();
            if(levels){
                listDir(fs, file.name(), levels -1);
            }
        } else {
            file.name();
            file.size();
        }
        file = root.openNextFile();
    }
    
}
// Write File
void writeFile(fs::FS &fs, const char * path, const char * message){
    
    path;
    
    File file = fs.open(path, FILE_WRITE);
    
    if(!file){
        return;
    }
    
    if(file.print(message)){
        ;  
    } else {
        ;  
    }
    
    file.close();
    
}
// Append File
void appendFile(fs::FS &fs, const char * path, const char * message){
    
    path;
    
    File file = fs.open(path, FILE_APPEND);
    
    if(!file){
        return;
    }
    
    if(file.print(message)){
        ;  
    } else {
        ;  
    }
    
    file.close();
    
}

setup.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Setup
void setup() {
// EEPROM Size
EEPROM.begin(EEPROM_SIZE);
// EEPROM Unique ID
isUID();
// GPS Receiver
// Setup GPS
setupGPS();
// SHARP Display Start & Clear the Display
display.begin();
// Clear Display
display.clearDisplay();
// Display UID
isDisplayUID();
// Wire - Inialize I2C Hardware
Wire.begin();
// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
myBME280.begin();
// CCS811 - eCO2 & tVOC
myCCS811.begin();
// Initialize the LED Green
pinMode(iLEDGreen, OUTPUT);
// Date & Time RTC
// PCF8523 Precision RTC
setupRTC();
// Date & Time
isRTC();
// microSD Card
setupSD();
// Slide Switch
pinMode(iSS1, INPUT);
// EMF Meter (Single Axis) - Setup
isSetupEMF();
// RHT03 Humidity and Temperature Sensor
// setup RTH03 Humidity and Temperature Sensor
setupRTH03();
// PIR Motion
// Setup PIR
setupPIR();
delay( 5000 );
}
// Setup void setup() { // EEPROM Size EEPROM.begin(EEPROM_SIZE); // EEPROM Unique ID isUID(); // GPS Receiver // Setup GPS setupGPS(); // SHARP Display Start & Clear the Display display.begin(); // Clear Display display.clearDisplay(); // Display UID isDisplayUID(); // Wire - Inialize I2C Hardware Wire.begin(); // SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure myBME280.begin(); // CCS811 - eCO2 & tVOC myCCS811.begin(); // Initialize the LED Green pinMode(iLEDGreen, OUTPUT); // Date & Time RTC // PCF8523 Precision RTC setupRTC(); // Date & Time isRTC(); // microSD Card setupSD(); // Slide Switch pinMode(iSS1, INPUT); // EMF Meter (Single Axis) - Setup isSetupEMF(); // RHT03 Humidity and Temperature Sensor // setup RTH03 Humidity and Temperature Sensor setupRTH03(); // PIR Motion // Setup PIR setupPIR(); delay( 5000 ); }
// Setup
void setup() {

  // EEPROM Size
  EEPROM.begin(EEPROM_SIZE);
  
  // EEPROM Unique ID
  isUID();
  
  // GPS Receiver
  // Setup GPS
  setupGPS();
  
  // SHARP Display Start & Clear the Display
  display.begin();
  // Clear Display
  display.clearDisplay();
  
  // Display UID
  isDisplayUID();

  // Wire - Inialize I2C Hardware
  Wire.begin();

  // SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
  myBME280.begin();
  
  // CCS811 - eCO2 & tVOC
  myCCS811.begin();

  // Initialize the LED Green
  pinMode(iLEDGreen, OUTPUT);

  // Date & Time RTC
  // PCF8523 Precision RTC 
  setupRTC();
  
  // Date & Time
  isRTC();
  
  // microSD Card
  setupSD();

  // Slide Switch
  pinMode(iSS1, INPUT);

  // EMF Meter (Single Axis) - Setup
  isSetupEMF();

  // RHT03 Humidity and Temperature Sensor
  // setup RTH03 Humidity and Temperature Sensor
  setupRTH03();

  // PIR Motion
  // Setup PIR
  setupPIR();

  delay( 5000 );

}

Technology Experience

  • Single-Board Microcontrollers (Arduino, Raspberry Pi,Espressif, etc…)
  • Robotics
  • Research & Development (R & D)
  • Desktop Applications (Windows, OSX, Linux, Multi-OS, Multi-Tier, etc…)
  • Mobile Applications (Android, iOS, Blackberry, Windows Mobile, Windows CE, etc…)
  • Web Applications (LAMP, Scripting, Java, ASP, ASP.NET, RoR, Wakanda, etc…)
  • Social Media Programming & Integration (Facebook, Twitter, YouTube, Pinterest, etc…)
  • Content Management Systems (WordPress, Drupal, Joomla, Moodle, etc…)
  • Bulletin Boards (phpBB, SMF, Vanilla, jobberBase, etc…)
  • eCommerce (WooCommerce, OSCommerce, ZenCart, PayPal Shopping Cart, etc…)

Instructor

  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics
  • DOS, Windows, OSX, Linux, iOS, Android, Multi-OS
  • Linux-Apache-PHP-MySQL

Follow Us

The Alpha Geek

Aphasia
https://www.donluc.com/?page_id=2149

J. Luc Paquin – Curriculum Vitae
https://www.donluc.com/DLHackster/LucPaquinCVEngMk2020a.pdf

Web: https://www.donluc.com/
Web: http://www.jlpconsultants.com/
Web: https://www.donluc.com/DLHackster/
Web: https://www.hackster.io/neosteam-labs
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/luc.paquin/

Don Luc

Project #11: ESP32 Feather – PIR Motion Sensor – Mk11

PIR Motion Sensor

——

——

PIR Motion Sensor

——

PIR Motion Sensor

——

PIR Motion Sensor

——

PIR Motion Sensor

——

PIR Motion Sensor

Passive infrared (PIR) sensors are motion-detecting devices used in security systems across the world, even though you may not see them, they probably see you.

This is a simple to use motion sensor. Power it up and wait 1-2 seconds for the sensor to get a snapshot of the still room. If anything moves after that period, the ‘alarm’ pin will go low.

Pololu Adjustable Boost Regulator 2.5-9.5V

This powerful, adjustable boost regulator can generate an output voltage as high as 9.5 V from an input voltage as low as 1.5 V, all in a compact, 0.42″ x 0.88″ x 0.23″ package. A trimmer potentiometer lets you set the boost regulator’s output voltage to a value between 2.5 and 9.5 V.

DL1911Mk02

1 x Adafruit HUZZAH32 ESP32 Feather
1 x Adafruit SHARP Memory Display
1 x Adafruit Adalogger FeatherWing – RTC + SD
1 x CR1220 12mm Lithium Battery
1 x 8Gb Micro SD Card
1 x RHT03 Humidity and Temperature Sensor
1 x GPS Receiver GP-20U
1 x LED Green
1 x Rocker Switches
1 x 100 Ohm
1 x 10K Ohm
1 x 3.3M Ohm
1 x Antenna
1 x Lithium Ion Battery – 2.5Ah
1 x PIR Motion Sensor
1 x Pololu Adjustable Boost Regulator 2.5-9.5V
1 x LED Green 1
14 x Jumper Wires 3″ M/M
10 x Jumper Wires 6″ M/M
2 x Wire
1 x Full-Size Breadboard
2 x Breadboard
1 x SparkFun Cerberus USB Cable

Adafruit HUZZAH32 ESP32 Feather

LG0 – Digital 21
RO1 – Digital 16
RHT – Digital 17
SCK – Digital 13
MOS – Digital 12
SSD – Digital 27
SDA – Digital 23
SCL – Digital 22
SD1 – Digital 33
SC2 – Digital 5
MO2 – Digital 18
MI2 – Digital 19
GPS – Digital 4
EMF – Analog A0
BAT – Analog A13
MOT – Digital 32
LG1 – Digital 14
GND – GND
VIN – +3.3V

DL1911Mk02.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// ***** Don Luc Electronics *****
// Software Version Information
// Project #11: HUZZAH32 ESP32 Feather - PIR Motion - Mk11
// 11-02
// DL1911Mk02p.ino 11-11
// Adafruit HUZZAH32 ESP32 Feather Board
// SHARP Display
// LED Green
// Adalogger FeatherWing - RTC + SD
// EEPROM
// RHT03 Humidity and Temperature Sensor
// Rocker Switches
// GPS Receiver
// EMF Meter (Single Axis)
// Lithium Ion Battery - 2.5Ah
// PIR Motion
// Pololu Adjustable Boost Regulator 2.5-9.5V
// LED Green 1
// include Library Code
// SHARP Memory Display
#include <Adafruit_SharpMem.h>
#include <Adafruit_GFX.h>
// Date and Time
#include "RTClib.h"
// EEPROM library to read EEPROM with unique ID for unit
#include "EEPROM.h"
// RHT Humidity and Temperature Sensor
#include <SparkFun_RHT03.h>
// SD Card
#include "FS.h"
#include "SD.h"
#include "SPI.h"
// GPS Receiver
#include <TinyGPS++.h>
#include <HardwareSerial.h>
// SHARP Memory Display
// any pins can be used
#define SHARP_SCK 13
#define SHARP_MOSI 12
#define SHARP_SS 27
// Set the size of the display here, e.g. 144x168!
Adafruit_SharpMem display(SHARP_SCK, SHARP_MOSI, SHARP_SS, 144, 168);
// The currently-available SHARP Memory Display (144x168 pixels)
// requires > 4K of microcontroller RAM; it WILL NOT WORK on Arduino Uno
// or other <4K "classic" devices!
#define BLACK 0
#define WHITE 1
int minorHalfSize; // 1/2 of lesser of display width or height
// LED Green
int iLEDGreen = 21; // LED Green
// PCF8523 Precision RTC
RTC_PCF8523 rtc;
String dateRTC = "";
String timeRTC = "";
// RHT Humidity and Temperature Sensor
const int RHT03_DATA_PIN = 17; // RHT03 data pin Digital 17
RHT03 rht; // This creates a RTH03 object, which we'll use to interact with the sensor
float latestHumidity;
float latestTempC;
float latestTempF;
// SD Card
const int chipSelect = 33; // SD Card
String zzzzzz = "";
// Rocker Switches
int iRow1 = 16; // Rocker Switches Digital 16
int iRow1State = 0; // Variable for reading the pushbutton status
// ESP32 HardwareSerial
HardwareSerial tGPS(2);
// GPS Receiver
#define gpsRXPIN 4
#define gpsTXPIN 36 // This one is unused and doesnt have a conection
// The TinyGPS++ object
TinyGPSPlus gps;
float TargetLat;
float TargetLon;
int Status = 0;
// EMF Meter (Single Axis)
#define NUMREADINGS 15 // Raise this number to increase data smoothing
int senseLimit = 15; // Raise this number to decrease sensitivity (up to 1023 max)
int val = 0; // Val
int iEMF = A0; // EMF Meter
int readings[ NUMREADINGS ]; // Readings from the analog input
int ind = 0; // Index of the current reading
int total = 0; // Running total
int average = 0; // Final average of the probe reading
int iEMFDis = 0;
int iEMFRect = 0;
// LiPo Battery
const int bat = A13; // LiPo Battery
uint16_t vbat = 0;
int iBat = 0;
// PIR Motion
const int iMotion = 32; // Motion detector
const int iLEDGreen1 = 14; // LED Green 1
int proximity = LOW; // Proximity
String Det = "";
// The current address in the EEPROM (i.e. which byte
// we're going to read to next)
#define EEPROM_SIZE 64
String sver = "11-2.p";
// Unit ID information
String uid = "";
void loop() {
// Receives NEMA data from GPS receiver
// This sketch displays information every time a new sentence is correctly encoded.
while ( tGPS.available() > 0)
if (gps.encode( tGPS.read() ))
{
displayInfo();
}
if (millis() > 5000 && gps.charsProcessed() < 10)
{
while(true);
}
// Date and Time
isRTC();
// RHT03 Humidity and Temperature Sensor
isRHT03();
// SHARP Memory Display On
isDisplayOn();
// Rocker Switched
// Read the state of the iRow1 value
iRow1State = digitalRead(iRow1);
// EMF Meter (Single Axis)
isEMF();
// LiPo Battery
isBattery();
// isPIR Motion
isPIR();
// Check if the pushbutton is pressed. If it is, the buttonState is HIGH:
if (iRow1State == HIGH) {
// iLEDGreen
digitalWrite(iLEDGreen, HIGH );
// SD Card
isSD();
} else {
// iLEDGreen
digitalWrite(iLEDGreen, LOW );
}
// Delay
delay( 1000 );
}
// ***** Don Luc Electronics ***** // Software Version Information // Project #11: HUZZAH32 ESP32 Feather - PIR Motion - Mk11 // 11-02 // DL1911Mk02p.ino 11-11 // Adafruit HUZZAH32 ESP32 Feather Board // SHARP Display // LED Green // Adalogger FeatherWing - RTC + SD // EEPROM // RHT03 Humidity and Temperature Sensor // Rocker Switches // GPS Receiver // EMF Meter (Single Axis) // Lithium Ion Battery - 2.5Ah // PIR Motion // Pololu Adjustable Boost Regulator 2.5-9.5V // LED Green 1 // include Library Code // SHARP Memory Display #include <Adafruit_SharpMem.h> #include <Adafruit_GFX.h> // Date and Time #include "RTClib.h" // EEPROM library to read EEPROM with unique ID for unit #include "EEPROM.h" // RHT Humidity and Temperature Sensor #include <SparkFun_RHT03.h> // SD Card #include "FS.h" #include "SD.h" #include "SPI.h" // GPS Receiver #include <TinyGPS++.h> #include <HardwareSerial.h> // SHARP Memory Display // any pins can be used #define SHARP_SCK 13 #define SHARP_MOSI 12 #define SHARP_SS 27 // Set the size of the display here, e.g. 144x168! Adafruit_SharpMem display(SHARP_SCK, SHARP_MOSI, SHARP_SS, 144, 168); // The currently-available SHARP Memory Display (144x168 pixels) // requires > 4K of microcontroller RAM; it WILL NOT WORK on Arduino Uno // or other <4K "classic" devices! #define BLACK 0 #define WHITE 1 int minorHalfSize; // 1/2 of lesser of display width or height // LED Green int iLEDGreen = 21; // LED Green // PCF8523 Precision RTC RTC_PCF8523 rtc; String dateRTC = ""; String timeRTC = ""; // RHT Humidity and Temperature Sensor const int RHT03_DATA_PIN = 17; // RHT03 data pin Digital 17 RHT03 rht; // This creates a RTH03 object, which we'll use to interact with the sensor float latestHumidity; float latestTempC; float latestTempF; // SD Card const int chipSelect = 33; // SD Card String zzzzzz = ""; // Rocker Switches int iRow1 = 16; // Rocker Switches Digital 16 int iRow1State = 0; // Variable for reading the pushbutton status // ESP32 HardwareSerial HardwareSerial tGPS(2); // GPS Receiver #define gpsRXPIN 4 #define gpsTXPIN 36 // This one is unused and doesnt have a conection // The TinyGPS++ object TinyGPSPlus gps; float TargetLat; float TargetLon; int Status = 0; // EMF Meter (Single Axis) #define NUMREADINGS 15 // Raise this number to increase data smoothing int senseLimit = 15; // Raise this number to decrease sensitivity (up to 1023 max) int val = 0; // Val int iEMF = A0; // EMF Meter int readings[ NUMREADINGS ]; // Readings from the analog input int ind = 0; // Index of the current reading int total = 0; // Running total int average = 0; // Final average of the probe reading int iEMFDis = 0; int iEMFRect = 0; // LiPo Battery const int bat = A13; // LiPo Battery uint16_t vbat = 0; int iBat = 0; // PIR Motion const int iMotion = 32; // Motion detector const int iLEDGreen1 = 14; // LED Green 1 int proximity = LOW; // Proximity String Det = ""; // The current address in the EEPROM (i.e. which byte // we're going to read to next) #define EEPROM_SIZE 64 String sver = "11-2.p"; // Unit ID information String uid = ""; void loop() { // Receives NEMA data from GPS receiver // This sketch displays information every time a new sentence is correctly encoded. while ( tGPS.available() > 0) if (gps.encode( tGPS.read() )) { displayInfo(); } if (millis() > 5000 && gps.charsProcessed() < 10) { while(true); } // Date and Time isRTC(); // RHT03 Humidity and Temperature Sensor isRHT03(); // SHARP Memory Display On isDisplayOn(); // Rocker Switched // Read the state of the iRow1 value iRow1State = digitalRead(iRow1); // EMF Meter (Single Axis) isEMF(); // LiPo Battery isBattery(); // isPIR Motion isPIR(); // Check if the pushbutton is pressed. If it is, the buttonState is HIGH: if (iRow1State == HIGH) { // iLEDGreen digitalWrite(iLEDGreen, HIGH ); // SD Card isSD(); } else { // iLEDGreen digitalWrite(iLEDGreen, LOW ); } // Delay delay( 1000 ); }
// ***** Don Luc Electronics *****
// Software Version Information
// Project #11: HUZZAH32 ESP32 Feather - PIR Motion - Mk11
// 11-02
// DL1911Mk02p.ino 11-11
// Adafruit HUZZAH32 ESP32 Feather Board
// SHARP Display
// LED Green
// Adalogger FeatherWing - RTC + SD
// EEPROM
// RHT03 Humidity and Temperature Sensor
// Rocker Switches
// GPS Receiver
// EMF Meter (Single Axis)
// Lithium Ion Battery - 2.5Ah
// PIR Motion
// Pololu Adjustable Boost Regulator 2.5-9.5V
// LED Green 1

// include Library Code
// SHARP Memory Display
#include <Adafruit_SharpMem.h>
#include <Adafruit_GFX.h>
// Date and Time
#include "RTClib.h"
// EEPROM library to read EEPROM with unique ID for unit
#include "EEPROM.h"
// RHT Humidity and Temperature Sensor
#include <SparkFun_RHT03.h>
// SD Card
#include "FS.h"
#include "SD.h"
#include "SPI.h"
// GPS Receiver
#include <TinyGPS++.h>
#include <HardwareSerial.h>

// SHARP Memory Display
// any pins can be used
#define SHARP_SCK  13
#define SHARP_MOSI 12
#define SHARP_SS   27
// Set the size of the display here, e.g. 144x168!
Adafruit_SharpMem display(SHARP_SCK, SHARP_MOSI, SHARP_SS, 144, 168);
// The currently-available SHARP Memory Display (144x168 pixels)
// requires > 4K of microcontroller RAM; it WILL NOT WORK on Arduino Uno
// or other <4K "classic" devices!
#define BLACK 0
#define WHITE 1
int minorHalfSize; // 1/2 of lesser of display width or height

// LED Green
int iLEDGreen =  21;                 // LED Green

// PCF8523 Precision RTC 
RTC_PCF8523 rtc;
String dateRTC = "";
String timeRTC = "";

// RHT Humidity and Temperature Sensor
const int RHT03_DATA_PIN = 17;          // RHT03 data pin Digital 17
RHT03 rht;                              // This creates a RTH03 object, which we'll use to interact with the sensor
float latestHumidity;
float latestTempC;
float latestTempF;

// SD Card
const int chipSelect = 33;              // SD Card
String zzzzzz = "";

// Rocker Switches
int iRow1 = 16;                         // Rocker Switches Digital 16
int iRow1State = 0;                     // Variable for reading the pushbutton status

// ESP32 HardwareSerial
HardwareSerial tGPS(2);

// GPS Receiver
#define gpsRXPIN 4
#define gpsTXPIN 36                     // This one is unused and doesnt have a conection
// The TinyGPS++ object
TinyGPSPlus gps;
float TargetLat;
float TargetLon;
int Status = 0;

// EMF Meter (Single Axis)
#define NUMREADINGS 15                    // Raise this number to increase data smoothing
int senseLimit = 15;                      // Raise this number to decrease sensitivity (up to 1023 max)
int val = 0;                              // Val
int iEMF = A0;                            // EMF Meter
int readings[ NUMREADINGS ];              // Readings from the analog input
int ind = 0;                              // Index of the current reading
int total = 0;                            // Running total
int average = 0;                          // Final average of the probe reading
int iEMFDis = 0;
int iEMFRect = 0;

// LiPo Battery
const int bat = A13;                      // LiPo Battery
uint16_t vbat = 0;
int iBat = 0;

// PIR Motion
const int iMotion = 32;                   // Motion detector
const int iLEDGreen1 = 14;                // LED Green 1
int proximity = LOW;                      // Proximity
String Det = "";

// The current address in the EEPROM (i.e. which byte
// we're going to  read to next)
#define EEPROM_SIZE 64
String sver = "11-2.p";
// Unit ID information
String uid = "";

void loop() {

  // Receives NEMA data from GPS receiver
  // This sketch displays information every time a new sentence is correctly encoded.
  while ( tGPS.available() > 0)
    if (gps.encode( tGPS.read() ))
    {
     displayInfo();
    }
  
  if (millis() > 5000 && gps.charsProcessed() < 10)
  {
    while(true);
  }

  // Date and Time 
  isRTC();
  
  // RHT03 Humidity and Temperature Sensor
  isRHT03();
  
  // SHARP Memory Display On
  isDisplayOn();
  
  // Rocker Switched
  // Read the state of the iRow1 value
  iRow1State = digitalRead(iRow1);

  // EMF Meter (Single Axis)
  isEMF();

  // LiPo Battery
  isBattery();

  // isPIR Motion
  isPIR();

  // Check if the pushbutton is pressed. If it is, the buttonState is HIGH:
  if (iRow1State == HIGH) {

    // iLEDGreen
    digitalWrite(iLEDGreen,  HIGH );
    // SD Card
    isSD();

  } else {

    // iLEDGreen
    digitalWrite(iLEDGreen,  LOW );
  
  }
   
  // Delay 
  delay( 1000 );

}

getBattery.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// LiPo Battery
void isBattery() {
// Battery
vbat = analogRead(bat);
vbat = vbat / 2;
iBat = map( vbat, 1, 1064, 1, 100);
}
// LiPo Battery void isBattery() { // Battery vbat = analogRead(bat); vbat = vbat / 2; iBat = map( vbat, 1, 1064, 1, 100); }
// LiPo Battery
void isBattery() {

  // Battery
  vbat = analogRead(bat);
  vbat = vbat / 2;

  iBat = map( vbat, 1, 1064, 1, 100);
  
}

getDisplay.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// SHARP Memory Display On
void isDisplayOn() {
// Clear Display
display.clearDisplay();
// Text display date, time, LED on, Etc...
display.setRotation(4);
display.setTextSize(2);
display.setTextColor(BLACK);
// Date
display.setCursor(0,1);
display.println( dateRTC );
// Time
display.setCursor(0,17);
display.println( timeRTC );
// Longitude
display.setCursor(0,35);
display.print("Lon: ");
display.println( TargetLon );
// Latitude
display.setCursor(0,55);
display.print("Lat: ");
display.println( TargetLat );
// Humidity
display.setCursor(0,74);
display.print("Hum: ");
display.print( latestHumidity );
display.println("%");
// Temp C
display.setCursor(0,94);
display.print("Cel: ");
display.print( latestTempC );
display.println("*C");
// EMF Meter
display.setCursor(0,114);
display.print("EMF: ");
display.println( iEMFDis );
// Battery
display.setCursor(0,134);
display.print("Bat: ");
display.print( iBat );
display.println( "%" );
// PIR Motion
display.println( Det );
display.setCursor(0,154);
// Refresh
display.refresh();
}
// SHARP Memory Display - UID
void isDisplayUID() {
// Clear Display
display.clearDisplay();
// text display EEPROM
display.setRotation(4);
display.setTextSize(2);
display.setTextColor(BLACK);
// EEPROM with Unique ID
display.setCursor(0,20);
display.print( "UID: " );
display.println( uid );
// Version
display.setCursor(0,45);
display.print( "VER: ");
display.println( sver );
// Refresh
display.refresh();
delay( 100 );
}
// SHARP Memory Display On void isDisplayOn() { // Clear Display display.clearDisplay(); // Text display date, time, LED on, Etc... display.setRotation(4); display.setTextSize(2); display.setTextColor(BLACK); // Date display.setCursor(0,1); display.println( dateRTC ); // Time display.setCursor(0,17); display.println( timeRTC ); // Longitude display.setCursor(0,35); display.print("Lon: "); display.println( TargetLon ); // Latitude display.setCursor(0,55); display.print("Lat: "); display.println( TargetLat ); // Humidity display.setCursor(0,74); display.print("Hum: "); display.print( latestHumidity ); display.println("%"); // Temp C display.setCursor(0,94); display.print("Cel: "); display.print( latestTempC ); display.println("*C"); // EMF Meter display.setCursor(0,114); display.print("EMF: "); display.println( iEMFDis ); // Battery display.setCursor(0,134); display.print("Bat: "); display.print( iBat ); display.println( "%" ); // PIR Motion display.println( Det ); display.setCursor(0,154); // Refresh display.refresh(); } // SHARP Memory Display - UID void isDisplayUID() { // Clear Display display.clearDisplay(); // text display EEPROM display.setRotation(4); display.setTextSize(2); display.setTextColor(BLACK); // EEPROM with Unique ID display.setCursor(0,20); display.print( "UID: " ); display.println( uid ); // Version display.setCursor(0,45); display.print( "VER: "); display.println( sver ); // Refresh display.refresh(); delay( 100 ); }
// SHARP Memory Display On
void isDisplayOn() {

    // Clear Display
    display.clearDisplay();
    // Text display date, time, LED on, Etc...
    display.setRotation(4);
    display.setTextSize(2);
    display.setTextColor(BLACK);
    // Date
    display.setCursor(0,1);
    display.println( dateRTC );
    // Time
    display.setCursor(0,17);
    display.println( timeRTC );
    // Longitude  
    display.setCursor(0,35);
    display.print("Lon: ");
    display.println( TargetLon );
    // Latitude
    display.setCursor(0,55);
    display.print("Lat: ");
    display.println( TargetLat );
    // Humidity
    display.setCursor(0,74);
    display.print("Hum: ");
    display.print( latestHumidity );
    display.println("%");
    // Temp C
    display.setCursor(0,94);
    display.print("Cel: ");
    display.print( latestTempC );
    display.println("*C");
    // EMF Meter
    display.setCursor(0,114);
    display.print("EMF: ");
    display.println( iEMFDis );
    // Battery
    display.setCursor(0,134);
    display.print("Bat: ");
    display.print( iBat );
    display.println( "%" );
    // PIR Motion
    display.println( Det );
    display.setCursor(0,154);
    // Refresh
    display.refresh(); 

}
// SHARP Memory Display - UID
void isDisplayUID() {

    // Clear Display
    display.clearDisplay();
    // text display EEPROM
    display.setRotation(4);
    display.setTextSize(2);
    display.setTextColor(BLACK);
    // EEPROM with Unique ID
    display.setCursor(0,20);
    display.print( "UID: " );
    display.println( uid );
    // Version
    display.setCursor(0,45);
    display.print( "VER: ");
    display.println( sver  );
    // Refresh
    display.refresh();
    delay( 100 );
    
}

getEEPROM.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// EEPROM
void GetUID()
{
// Get unit ID
uid = "";
for (int x = 0; x < 5; x++)
{
uid = uid + char(EEPROM.read(x));
}
}
// EEPROM void GetUID() { // Get unit ID uid = ""; for (int x = 0; x < 5; x++) { uid = uid + char(EEPROM.read(x)); } }
// EEPROM
void GetUID()
{
  
  // Get unit ID
  uid = "";
  for (int x = 0; x < 5; x++)
  {
    uid = uid + char(EEPROM.read(x));
  }
  
}

getEMF.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// EMF Meter (Single Axis)
// setupEMF
void setupEMF() {
// EMF Meter (Single Axis)
pinMode( iEMF, OUTPUT ); // EMF Meter
for (int i = 0; i < NUMREADINGS; i++){
readings[ i ] = 0; // Initialize all the readings to 0
}
}
// isEMF
void isEMF(){
// Probe
val = analogRead( iEMF ); // Take a reading from the probe
if( val >= 1 ){ // If the reading isn't zero, proceed
val = constrain( val, 1, senseLimit ); // Turn any reading higher than the senseLimit value into the senseLimit value
val = map( val, 1, senseLimit, 1, 1023 ); // Remap the constrained value within a 1 to 1023 range
total -= readings[ ind ]; // Subtract the last reading
readings[ ind ] = val; // Read from the sensor
total += readings[ ind ]; // Add the reading to the total
ind = ( ind + 1 ); // Advance to the next index
if ( ind >= NUMREADINGS ) { // If we're at the end of the array...
ind = 0; // ...wrap around to the beginning
}
average = total / NUMREADINGS; // Calculate the average
// average = val;
}
else
{
iEMFRect = 0;
val = 0;
average = 0;
}
iEMFDis = average;
iEMFRect = map( average, 1, 1023, 1, 144 );
}
// EMF Meter (Single Axis) // setupEMF void setupEMF() { // EMF Meter (Single Axis) pinMode( iEMF, OUTPUT ); // EMF Meter for (int i = 0; i < NUMREADINGS; i++){ readings[ i ] = 0; // Initialize all the readings to 0 } } // isEMF void isEMF(){ // Probe val = analogRead( iEMF ); // Take a reading from the probe if( val >= 1 ){ // If the reading isn't zero, proceed val = constrain( val, 1, senseLimit ); // Turn any reading higher than the senseLimit value into the senseLimit value val = map( val, 1, senseLimit, 1, 1023 ); // Remap the constrained value within a 1 to 1023 range total -= readings[ ind ]; // Subtract the last reading readings[ ind ] = val; // Read from the sensor total += readings[ ind ]; // Add the reading to the total ind = ( ind + 1 ); // Advance to the next index if ( ind >= NUMREADINGS ) { // If we're at the end of the array... ind = 0; // ...wrap around to the beginning } average = total / NUMREADINGS; // Calculate the average // average = val; } else { iEMFRect = 0; val = 0; average = 0; } iEMFDis = average; iEMFRect = map( average, 1, 1023, 1, 144 ); }
// EMF Meter (Single Axis)
// setupEMF
void setupEMF() {

  // EMF Meter (Single Axis)
  pinMode( iEMF, OUTPUT ); // EMF Meter
  for (int i = 0; i < NUMREADINGS; i++){
    readings[ i ] = 0;     // Initialize all the readings to 0
  }
  
}
// isEMF
void isEMF(){

  // Probe
  val = analogRead( iEMF );                    // Take a reading from the probe
  
  if( val >= 1 ){                              // If the reading isn't zero, proceed

    val = constrain( val, 1, senseLimit );     // Turn any reading higher than the senseLimit value into the senseLimit value
    val = map( val, 1, senseLimit, 1, 1023 );  // Remap the constrained value within a 1 to 1023 range

    total -= readings[ ind ];                  // Subtract the last reading
    readings[ ind ] = val;                     // Read from the sensor
    total += readings[ ind ];                  // Add the reading to the total
    ind = ( ind + 1 );                         // Advance to the next index

    if ( ind >= NUMREADINGS ) {                // If we're at the end of the array...
      ind = 0;                                 // ...wrap around to the beginning
    }  

    average = total / NUMREADINGS;             // Calculate the average

    
   // average = val;
  }
  else
  {
      
    iEMFRect = 0;
    val = 0;
    average = 0;
    
  }

  iEMFDis = average;
  iEMFRect = map( average, 1, 1023, 1, 144 );
    
}

getGPS.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// GPS Receiver
void setupGPS() {
// Setup GPS
tGPS.begin( 9600 , SERIAL_8N1, gpsRXPIN, gpsTXPIN );
}
// GPS Vector Pointer Target
void displayInfo()
{
// Location
if (gps.location.isValid())
{
TargetLat = gps.location.lat();
TargetLon = gps.location.lng();
Status = 2;
}
else
{
Status = 0;
}
}
// GPS Receiver void setupGPS() { // Setup GPS tGPS.begin( 9600 , SERIAL_8N1, gpsRXPIN, gpsTXPIN ); } // GPS Vector Pointer Target void displayInfo() { // Location if (gps.location.isValid()) { TargetLat = gps.location.lat(); TargetLon = gps.location.lng(); Status = 2; } else { Status = 0; } }
// GPS Receiver
void setupGPS() {

  // Setup GPS
  tGPS.begin(  9600 , SERIAL_8N1, gpsRXPIN, gpsTXPIN );
  
}
// GPS Vector Pointer Target
void displayInfo()
{

  // Location
  if (gps.location.isValid())
  {
    
    TargetLat = gps.location.lat();
    TargetLon = gps.location.lng();
    Status = 2;
    
  }
  else
  {

    Status = 0;
    
  }

}

getPIR.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// PIR Motion
void setupPIR() {
// Setup PIR Montion
pinMode(iMotion, INPUT_PULLUP);
pinMode(iLEDGreen1, OUTPUT);
}
// isPIR Motion
void isPIR() {
// Proximity
proximity = digitalRead(iMotion);
if (proximity == LOW)
{
// PIR Motion Sensor's LOW, Motion is detected
// LED Green 1 - HIGH
digitalWrite(iLEDGreen1, HIGH);
Det = "Motion!";
}
else
{
// PIR Motion Sensor's HIGH
// LED Green 1 - LOW
digitalWrite(iLEDGreen1, LOW);
Det = "****";
}
}
// PIR Motion void setupPIR() { // Setup PIR Montion pinMode(iMotion, INPUT_PULLUP); pinMode(iLEDGreen1, OUTPUT); } // isPIR Motion void isPIR() { // Proximity proximity = digitalRead(iMotion); if (proximity == LOW) { // PIR Motion Sensor's LOW, Motion is detected // LED Green 1 - HIGH digitalWrite(iLEDGreen1, HIGH); Det = "Motion!"; } else { // PIR Motion Sensor's HIGH // LED Green 1 - LOW digitalWrite(iLEDGreen1, LOW); Det = "****"; } }
// PIR Motion
void setupPIR() {

  // Setup PIR Montion
  pinMode(iMotion, INPUT_PULLUP);
  pinMode(iLEDGreen1, OUTPUT);
  
}
// isPIR Motion
void isPIR() {

  // Proximity
  proximity = digitalRead(iMotion);
  if (proximity == LOW) 
  {

    // PIR Motion Sensor's LOW, Motion is detected
    // LED Green 1 - HIGH
    digitalWrite(iLEDGreen1, HIGH);
    Det = "Motion!";
    
  }
  else
  {

    // PIR Motion Sensor's HIGH
    // LED Green 1 - LOW
    digitalWrite(iLEDGreen1, LOW);
    Det = "****";
    
  }
  
}

getRHT.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// RHT03 Humidity and Temperature Sensor
void isRHT03(){
// Call rht.update() to get new humidity and temperature values from the sensor.
int updateRet = rht.update();
// The humidity(), tempC(), and tempF() functions can be called -- after
// a successful update() -- to get the last humidity and temperature value
latestHumidity = rht.humidity();
latestTempC = rht.tempC();
latestTempF = rht.tempF();
}
// RHT03 Humidity and Temperature Sensor void isRHT03(){ // Call rht.update() to get new humidity and temperature values from the sensor. int updateRet = rht.update(); // The humidity(), tempC(), and tempF() functions can be called -- after // a successful update() -- to get the last humidity and temperature value latestHumidity = rht.humidity(); latestTempC = rht.tempC(); latestTempF = rht.tempF(); }
// RHT03 Humidity and Temperature Sensor
void isRHT03(){

  // Call rht.update() to get new humidity and temperature values from the sensor.
  int updateRet = rht.update();

  // The humidity(), tempC(), and tempF() functions can be called -- after 
  // a successful update() -- to get the last humidity and temperature value 
  latestHumidity = rht.humidity();
  latestTempC = rht.tempC();
  latestTempF = rht.tempF();
  
}

getRTCpcf8523.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// PCF8523 Precision RTC
void setupRTC() {
// pcf8523 Precision RTC
if (! rtc.begin()) {
while (1);
}
if (! rtc.initialized()) {
// Following line sets the RTC to the date & time this sketch was compiled
rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
// This line sets the RTC with an explicit date & time, for example to set
// January 21, 2014 at 3am you would call:
// rtc.adjust(DateTime(2018, 9, 29, 12, 17, 0));
}
}
// Date and Time RTC
void isRTC () {
// Date and Time
DateTime now = rtc.now();
// Date
dateRTC = now.year(), DEC;
dateRTC = dateRTC + "/";
dateRTC = dateRTC + now.month(), DEC;
dateRTC = dateRTC + "/";
dateRTC = dateRTC + now.day(), DEC;
// Time
timeRTC = now.hour(), DEC;
timeRTC = timeRTC + ":";
timeRTC = timeRTC + now.minute(), DEC;
timeRTC = timeRTC + ":";
timeRTC = timeRTC + now.second(), DEC;
}
// PCF8523 Precision RTC void setupRTC() { // pcf8523 Precision RTC if (! rtc.begin()) { while (1); } if (! rtc.initialized()) { // Following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: // rtc.adjust(DateTime(2018, 9, 29, 12, 17, 0)); } } // Date and Time RTC void isRTC () { // Date and Time DateTime now = rtc.now(); // Date dateRTC = now.year(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.month(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.day(), DEC; // Time timeRTC = now.hour(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.minute(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.second(), DEC; }
// PCF8523 Precision RTC 
void setupRTC() {

  // pcf8523 Precision RTC   
  if (! rtc.begin()) {
    while (1);
  }  
  if (! rtc.initialized()) {
    // Following line sets the RTC to the date & time this sketch was compiled
    rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));
    // This line sets the RTC with an explicit date & time, for example to set
    // January 21, 2014 at 3am you would call:
    // rtc.adjust(DateTime(2018, 9, 29, 12, 17, 0));
  }
  
}
// Date and Time RTC
void isRTC () {

  // Date and Time
  DateTime now = rtc.now();
  // Date
  dateRTC = now.year(), DEC; 
  dateRTC = dateRTC + "/";
  dateRTC = dateRTC + now.month(), DEC;
  dateRTC = dateRTC + "/";
  dateRTC = dateRTC + now.day(), DEC;
  // Time
  timeRTC = now.hour(), DEC;
  timeRTC = timeRTC + ":";
  timeRTC = timeRTC + now.minute(), DEC;
  timeRTC = timeRTC + ":";
  timeRTC = timeRTC + now.second(), DEC;
  
}

getSD.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// SD Card
void setupSD() {
// SD Card
pinMode( chipSelect , OUTPUT );
if(!SD.begin( chipSelect )){
;
return;
}
uint8_t cardType = SD.cardType();
if(cardType == CARD_NONE){
;
return;
}
//Serial.print("SD Card Type: ");
if(cardType == CARD_MMC){
;
} else if(cardType == CARD_SD){
;
} else if(cardType == CARD_SDHC){
;
} else {
;
}
uint64_t cardSize = SD.cardSize() / (1024 * 1024);
}
// SD Card
void isSD() {
zzzzzz = "";
zzzzzz = uid + "|" + sver + "|" + dateRTC + "|" + timeRTC + "|" + Status + "|" + TargetLon + "|" + TargetLat + "|" + latestHumidity + "|" + latestTempC + "|" + latestTempF + "|" + average + "|" + iBat + "|" + Det + "|\r";
char msg[zzzzzz.length() + 1];
zzzzzz.toCharArray(msg, zzzzzz.length() + 1);
appendFile(SD, "/espdata.txt", msg );
}
// List Dir
void listDir(fs::FS &fs, const char * dirname, uint8_t levels){
dirname;
File root = fs.open(dirname);
if(!root){
return;
}
if(!root.isDirectory()){
return;
}
File file = root.openNextFile();
while(file){
if(file.isDirectory()){
file.name();
if(levels){
listDir(fs, file.name(), levels -1);
}
} else {
file.name();
file.size();
}
file = root.openNextFile();
}
}
// Write File
void writeFile(fs::FS &fs, const char * path, const char * message){
path;
File file = fs.open(path, FILE_WRITE);
if(!file){
return;
}
if(file.print(message)){
;
} else {
;
}
file.close();
}
// Append File
void appendFile(fs::FS &fs, const char * path, const char * message){
//Serial.printf("Appending to file: %s\n", path);
path;
File file = fs.open(path, FILE_APPEND);
if(!file){
return;
}
if(file.print(message)){
;
} else {
;
}
file.close();
}
// SD Card void setupSD() { // SD Card pinMode( chipSelect , OUTPUT ); if(!SD.begin( chipSelect )){ ; return; } uint8_t cardType = SD.cardType(); if(cardType == CARD_NONE){ ; return; } //Serial.print("SD Card Type: "); if(cardType == CARD_MMC){ ; } else if(cardType == CARD_SD){ ; } else if(cardType == CARD_SDHC){ ; } else { ; } uint64_t cardSize = SD.cardSize() / (1024 * 1024); } // SD Card void isSD() { zzzzzz = ""; zzzzzz = uid + "|" + sver + "|" + dateRTC + "|" + timeRTC + "|" + Status + "|" + TargetLon + "|" + TargetLat + "|" + latestHumidity + "|" + latestTempC + "|" + latestTempF + "|" + average + "|" + iBat + "|" + Det + "|\r"; char msg[zzzzzz.length() + 1]; zzzzzz.toCharArray(msg, zzzzzz.length() + 1); appendFile(SD, "/espdata.txt", msg ); } // List Dir void listDir(fs::FS &fs, const char * dirname, uint8_t levels){ dirname; File root = fs.open(dirname); if(!root){ return; } if(!root.isDirectory()){ return; } File file = root.openNextFile(); while(file){ if(file.isDirectory()){ file.name(); if(levels){ listDir(fs, file.name(), levels -1); } } else { file.name(); file.size(); } file = root.openNextFile(); } } // Write File void writeFile(fs::FS &fs, const char * path, const char * message){ path; File file = fs.open(path, FILE_WRITE); if(!file){ return; } if(file.print(message)){ ; } else { ; } file.close(); } // Append File void appendFile(fs::FS &fs, const char * path, const char * message){ //Serial.printf("Appending to file: %s\n", path); path; File file = fs.open(path, FILE_APPEND); if(!file){ return; } if(file.print(message)){ ; } else { ; } file.close(); }
// SD Card
void setupSD() {

  // SD Card
    pinMode( chipSelect , OUTPUT );
    if(!SD.begin( chipSelect )){
        ;  
        return;
    }
    uint8_t cardType = SD.cardType();

    if(cardType == CARD_NONE){
        ; 
        return;
    }

    //Serial.print("SD Card Type: ");
    if(cardType == CARD_MMC){
        ; 
    } else if(cardType == CARD_SD){
        ; 
    } else if(cardType == CARD_SDHC){
        ; 
    } else {
        ; 
    } 

    uint64_t cardSize = SD.cardSize() / (1024 * 1024);
  
}
// SD Card
void isSD() {

  zzzzzz = "";

  zzzzzz = uid + "|" + sver + "|" + dateRTC + "|" + timeRTC + "|" + Status + "|" + TargetLon + "|" + TargetLat + "|" + latestHumidity + "|" + latestTempC + "|" + latestTempF + "|" + average + "|" + iBat + "|" + Det + "|\r";

  char msg[zzzzzz.length() + 1];

  zzzzzz.toCharArray(msg, zzzzzz.length() + 1);

  appendFile(SD, "/espdata.txt", msg );
  
}
// List Dir
void listDir(fs::FS &fs, const char * dirname, uint8_t levels){
    dirname;
    File root = fs.open(dirname);
    if(!root){
        return;
    }
    if(!root.isDirectory()){
        return;
    }

    File file = root.openNextFile();
    while(file){
        if(file.isDirectory()){
            file.name();
            if(levels){
                listDir(fs, file.name(), levels -1);
            }
        } else {
            file.name();
            file.size();
        }
        file = root.openNextFile();
    }
}
// Write File
void writeFile(fs::FS &fs, const char * path, const char * message){
    path;
    File file = fs.open(path, FILE_WRITE);
    if(!file){
        return;
    }
    if(file.print(message)){
        ;  
    } else {
        ;  
    }
    file.close();
}
// Append File
void appendFile(fs::FS &fs, const char * path, const char * message){
    //Serial.printf("Appending to file: %s\n", path);
    path;
    File file = fs.open(path, FILE_APPEND);
    if(!file){
        return;
    }
    if(file.print(message)){
        ;  
    } else {
        ;  
    }
    file.close();
}

setup.ino

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
// Setup
void setup() {
// EEPROM with Unique ID
EEPROM.begin(EEPROM_SIZE);
// Get Unit ID
GetUID();
// GPS Receiver
// Setup GPS
setupGPS();
// SHARP Display start & clear the display
display.begin();
display.clearDisplay();
isDisplayUID();
delay( 5000 );
// Initialize the LED Green
pinMode(iLEDGreen, OUTPUT);
// PCF8523 Precision RTC
setupRTC();
// Date and Time RTC
isRTC();
// RHT03 Humidity and Temperature Sensor
// Call rht.begin() to initialize the sensor and our data pin
rht.begin(RHT03_DATA_PIN);
// SD Card
setupSD();
// Rocker Switches
pinMode(iRow1, INPUT);
// EMF Meter (Single Axis)
setupEMF();
// PIR Motion
setupPIR();
}
// Setup void setup() { // EEPROM with Unique ID EEPROM.begin(EEPROM_SIZE); // Get Unit ID GetUID(); // GPS Receiver // Setup GPS setupGPS(); // SHARP Display start & clear the display display.begin(); display.clearDisplay(); isDisplayUID(); delay( 5000 ); // Initialize the LED Green pinMode(iLEDGreen, OUTPUT); // PCF8523 Precision RTC setupRTC(); // Date and Time RTC isRTC(); // RHT03 Humidity and Temperature Sensor // Call rht.begin() to initialize the sensor and our data pin rht.begin(RHT03_DATA_PIN); // SD Card setupSD(); // Rocker Switches pinMode(iRow1, INPUT); // EMF Meter (Single Axis) setupEMF(); // PIR Motion setupPIR(); }
// Setup
void setup() {

  // EEPROM with Unique ID
  EEPROM.begin(EEPROM_SIZE);
   
  // Get Unit ID
  GetUID();

  // GPS Receiver
  // Setup GPS
  setupGPS();
  
  // SHARP Display start & clear the display
  display.begin();
  display.clearDisplay();

  isDisplayUID();

  delay( 5000 );
  
  // Initialize the LED Green
  pinMode(iLEDGreen, OUTPUT);

  // PCF8523 Precision RTC 
  setupRTC();

  // Date and Time RTC
  isRTC();

  // RHT03 Humidity and Temperature Sensor
  // Call rht.begin() to initialize the sensor and our data pin
  rht.begin(RHT03_DATA_PIN);

  // SD Card
  setupSD();

  // Rocker Switches
  pinMode(iRow1, INPUT);

  // EMF Meter (Single Axis)
  setupEMF();

  // PIR Motion
  setupPIR();

}

Follow Us

Web: https://www.donluc.com/
Web: http://neosteamlabs.com/
Web: http://www.jlpconsultants.com/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Facebook: https://www.facebook.com/neosteam.labs.9/
Instagram: https://www.instagram.com/neosteamlabs/
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Twitter: https://twitter.com/labs_steam
Etsy: https://www.etsy.com/shop/NeoSteamLabs

Categories
Archives