Gyroscope
Project #26 – Radio Frequency – Display – Mk05
——
#DonLucElectronics #DonLuc #RadioFrequency #Moteino #Send #Receive #Display #FreeIMU #Magnetometer #Accelerometer #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
SparkFun Micro OLED Breakout
The SparkFun Qwiic Micro OLED Breakout is a Qwiic-enabled version of our popular Micro OLED display. The small monochrome, blue-on-black OLED screen presents incredibly clear images for your viewing pleasure. It’s the OLED display is crisp, and you can fit a deceivingly large amount of graphics on there. This breakout is perfect for adding graphics to your next project and displaying diagnostic information without resorting to a serial output, all with the ease of use of our own Qwiic Connect System.
This version of the Micro OLED Breakout is exactly the size of its non-Qwiic sibling, featuring a screen that is 64 pixels wide and 48 pixels tall and measuring 0.66″ across. But it has also been equipped with two Qwiic connectors, making it ideal for I2C operations. We’ve also added two mounting holes and a convenient Qwiic cable holder incorporated into a detachable tab on the board that can be easily removed thanks to a v-scored edge.
DL2211Mk09
2 x Moteino R2 (RFM12B)
1 x SparkFun Micro OLED Breakout (Qwiic)
1 x SparkFun 9 Degrees of Freedom – Sensor Stick
2 x Lithium Ion Battery – 1 Ah
1 x SparkFun Cerberus USB Cable
Moteino R2 (Receive)
TR0 – Digital 2
LED – Digital 9
TR1 – Digital 10
TR2 – Digital 11
TR3 – Digital 12
TR4 – Digital 13
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND
——
DL2211Mk09pr.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - Display - Mk05 26-05 Receive DL2211Mk09pr.ino 2 x Moteino R2 (RFM12B) 1 x SparkFun Micro OLED Breakout (Qwiic) 1 x SparkFun 9 Degrees of Freedom - Sensor Stick 2 x Lithium Ion Battery - 1Ah 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // RFM12B Radio #include <RFM12B.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // SparkFun Micro OLED #include <SFE_MicroOLED.h> // You will need to initialize the radio by telling it what ID // it has and what network it's on // The NodeID takes values from 1-127, 0 is reserved for sending // broadcast messages (send to all nodes) // The Network ID takes values from 0-255 // By default the SPI-SS line used is D10 on Atmega328. // You can change it by calling .SetCS(pin) where pin can be {8,9,10} // Network ID used for this unit #define NODEID 1 // The network ID we are on #define NETWORKID 99 // Serial #define SERIAL_BAUD 115200 // Encryption is OPTIONAL // to enable encryption you will need to: // - provide a 16-byte encryption KEY (same on all nodes that talk encrypted) // - to call .Encrypt(KEY) to start encrypting // - to stop encrypting call .Encrypt(NULL) uint8_t KEY[] = "ABCDABCDABCDABCD"; // Need an instance of the RFM12B Radio Module RFM12B radio; // Process Message // Message String msg = ""; int firstClosingBracket = 0; // Yaw Pitch Roll String sYaw = ""; String sPitch = ""; String sRoll = ""; float Yaw = 0; float Pitch = 0; float Roll = 0; // LED int iLED = 9; // SparkFun Micro OLED #define PIN_RESET 9 #define DC_JUMPER 1 // I2C declaration MicroOLED oled(PIN_RESET, DC_JUMPER); // Software Version Information String sver = "26-05"; void loop() { // is RFM12B Radio isRFM12BRadio(); // Micro OLED isMicroOLED(); }
getFreeIMU.ino
// FreeIMU // isFreeIMU void isFreeIMU(){ // FreeIMU // IMU Yaw Pitch Roll // msg = "<IMU|1000|1000|1000|*"; // msg = "<IMU|" + sYaw + "|" + sPitch + "|" + sRoll + "|*" firstClosingBracket = 0; // "<IMU|" firstClosingBracket = msg.indexOf('|'); msg.remove(0, 5); // Yaw firstClosingBracket = msg.indexOf('|'); sYaw = msg; sYaw.remove(firstClosingBracket); Yaw = sYaw.toFloat(); // Pitch firstClosingBracket = firstClosingBracket + 1; msg.remove(0, firstClosingBracket ); firstClosingBracket = msg.indexOf('|'); sPitch = msg; sPitch.remove(firstClosingBracket); Pitch = sPitch.toFloat(); // Roll firstClosingBracket = firstClosingBracket + 1; msg.remove(0, firstClosingBracket ); firstClosingBracket = msg.indexOf('|'); sRoll = msg; sRoll.remove(firstClosingBracket); Roll = sRoll.toFloat(); }
getMicroOLED.ino
// SparkFun Micro OLED // Setup Micro OLED void isSetupMicroOLED() { // Initialize the OLED oled.begin(); // Clear the display's internal memory oled.clear(ALL); // Display what's in the buffer (splashscreen) oled.display(); // Delay 1000 ms delay(1000); // Clear the buffer. oled.clear(PAGE); } // Micro OLED void isMicroOLED() { // Text Display FreeIMU // Clear the display oled.clear(PAGE); // Set cursor to top-left oled.setCursor(0, 0); // Set font to type 0 oled.setFontType(0); // FreeIMU oled.print("FreeIMU"); oled.setCursor(0, 12); // Yaw oled.print("Y: "); oled.print(Yaw); oled.setCursor(0, 25); // Pitch oled.print("P: "); oled.print(Pitch); oled.setCursor(0, 39); // Roll oled.print("R: "); oled.print(Roll); oled.display(); }
getRFM12BRadio.ino
// RFM12B Radio void isSetupRFM12BRadio() { // RFM12B Radio radio.Initialize(NODEID, RF12_433MHZ, NETWORKID); // Encryption radio.Encrypt(KEY); // Transmitting Serial.println("Listening..."); } // is RFM12 BRadio void isRFM12BRadio() { // Receive if (radio.ReceiveComplete()) { // CRC Pass if (radio.CRCPass()) { // Serial Serial.print('['); Serial.print(radio.GetSender()); Serial.print("] "); // Message msg = ""; // Can also use radio.GetDataLen() if you don't like pointers for (byte i = 0; i < *radio.DataLen; i++) { Serial.print((char)radio.Data[i]); msg = msg + (char)radio.Data[i]; } // Turn the LED on HIGH digitalWrite( iLED , HIGH); // FreeIMU // Yaw Pitch Roll isFreeIMU(); // ACK Requested if (radio.ACKRequested()) { // Send ACK radio.SendACK(); Serial.print(" - ACK Sent"); } // Turn the LED on LOW digitalWrite( iLED , LOW); } else { // BAD-CRC Serial.print("BAD-CRC"); } // Serial Serial.println(); } }
setup.ino
// Setup void setup() { // Serial Serial.begin(SERIAL_BAUD); // Give display time to power on delay(100); // Set up I2C bus Wire.begin(); // Setup Micro OLED isSetupMicroOLED(); // LED pinMode( iLED , OUTPUT); // RFM12B Radio isSetupRFM12BRadio(); }
——
Moteino R2 (Send)
TR0 – Digital 2
LED – Digital 9
TR1 – Digital 10
TR2 – Digital 11
TR3 – Digital 12
TR4 – Digital 13
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND
——
DL2211Mk09ps.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - Display - Mk05 26-05 Send DL2211Mk09ps.ino 2 x Moteino R2 (RFM12B) 1 x SparkFun Micro OLED Breakout (Qwiic) 1 x SparkFun 9 Degrees of Freedom - Sensor Stick 2 x Lithium Ion Battery - 1Ah 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // RFM12B Radio #include <RFM12B.h> // Sleep #include <avr/sleep.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Includes and variables for IMU integration // Accelerometer #include <ADXL345.h> // Magnetometer #include <HMC58X3.h> // MEMS Gyroscope #include <ITG3200.h> // Debug #include "DebugUtils.h" // FreeIMU #include <CommunicationUtils.h> #include <FreeIMU.h> // You will need to initialize the radio by telling it what ID // it has and what network it's on // The NodeID takes values from 1-127, 0 is reserved for sending // broadcast messages (send to all nodes) // The Network ID takes values from 0-255 // By default the SPI-SS line used is D10 on Atmega328. // You can change it by calling .SetCS(pin) where pin can be {8,9,10} // Network ID used for this unit #define NODEID 2 // The network ID we are on #define NETWORKID 99 // The node ID we're sending to #define GATEWAYID 1 // # of ms to wait for an ack #define ACK_TIME 50 // Serial #define SERIAL_BAUD 115200 // Encryption is OPTIONAL // to enable encryption you will need to: // - provide a 16-byte encryption KEY (same on all nodes that talk encrypted) // - to call .Encrypt(KEY) to start encrypting // - to stop encrypting call .Encrypt(NULL) uint8_t KEY[] = "ABCDABCDABCDABCD"; // Wait this many ms between sending packets int interPacketDelay = 1000; // Input char input = 0; // Need an instance of the RFM12B Radio Module RFM12B radio; // Send Size byte sendSize = 0; // Payload char payload[100]; // Request ACK bool requestACK = false; // LED int iLED = 9; // Set the FreeIMU object FreeIMU my3IMU = FreeIMU(); // Yaw Pitch Roll String zzzzzz = ""; String sYaw = ""; String sPitch = ""; String sRoll = ""; float ypr[3]; float Yaw = 0; float Pitch = 0; float Roll = 0; // Software Version Information String sver = "26-05"; void loop() { // isFreeIMU isFreeIMU(); // is RFM12B Radio isRFM12BRadio(); // Inter Packet Delay delay(interPacketDelay); }
getFreeIMU.ino
// FreeIMU // isFreeIMU void isFreeIMU(){ // FreeIMU // Yaw Pitch Roll my3IMU.getYawPitchRoll(ypr); // Yaw Yaw = ypr[0]; // Pitch Pitch = ypr[1]; // Roll Roll = ypr[2]; }
getRFM12BRadio.ino
// RFM12B Radio void isSetupRFM12BRadio(){ // RFM12B Radio radio.Initialize(NODEID, RF12_433MHZ, NETWORKID); // Encryption radio.Encrypt(KEY); // Sleep right away to save power radio.Sleep(); // Transmitting Serial.println("Transmitting...\n\n"); } // is RFM12 BRadio void isRFM12BRadio(){ // sYaw, sPitch, sRoll "" sYaw = ""; sPitch = ""; sRoll = ""; // sYaw, sPitch, sRoll concat sYaw.concat(Yaw); sPitch.concat(Pitch); sRoll.concat(Roll); // zzzzzz "" zzzzzz = ""; // zzzzzz = "<IMU|1000|1000|1000|*"; // zzzzzz = "<IMU|" + sYaw + "|" + sPitch + "|" + sRoll + "|*" zzzzzz = "<IMU|" + sYaw + "|" + sPitch + "|" + sRoll + "|*"; // sendSize Length sendSize = zzzzzz.length(); // sendSize payload[sendSize]; // sendSize, charAt for(byte i = 0; i < sendSize+1; i++){ payload[i] = zzzzzz.charAt(i); } // payload Serial.print(payload); // Request ACK requestACK = sendSize; // Wakeup radio.Wakeup(); // Turn the LED on HIGH digitalWrite( iLED , HIGH); // Send radio.Send(GATEWAYID, payload, sendSize, requestACK); // Request ACK if (requestACK) { Serial.print(" - waiting for ACK..."); if (waitForAck()){ Serial.print("Ok!"); } else Serial.print("nothing..."); } // Turn the LED on LOW digitalWrite( iLED , LOW); // Sleep radio.Sleep(); // Serial Serial.println(); } // Wait a few milliseconds for proper ACK, return true if received static bool waitForAck(){ // Now long now = millis(); // ACK while (millis() - now <= ACK_TIME){ if (radio.ACKReceived(GATEWAYID)){ return true; } } return false; }
setup.ino
// Setup void setup(){ // Serial Serial.begin(SERIAL_BAUD); // LED pinMode( iLED , OUTPUT); // Set up I2C bus Wire.begin(); // RFM12B Radio isSetupRFM12BRadio(); // Pause delay(5); // Initialize IMU my3IMU.init(); // Pause delay(5); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #26 – Radio Frequency – FreeIMU – Mk04
——
#DonLucElectronics #DonLuc #RadioFrequency #Moteino #Send #Receive #FreeIMU #Magnetometer #Accelerometer #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
FreeIMU
Orientation and Motion Sensing are widely implemented on various consumer products, such as mobile phones, tablets and cameras as they enable immediate interaction with virtual information. The prototyping phase of any orientation and motion sensing capable device is however a quite difficult process as it may involve complex hardware designing, math algorithms and programming. FreeIMU, an Open Hardware Framework for prototyping orientation and motion sensing capable devices. The framework consists in a small circuit board containing various sensors and a software library, built on top of the Arduino platform. Both the hardware and library are released under open licences and supported by an active community allowing to be implemented into research and commercial projects.
DL2211Mk08
2 x Moteino R2 (RFM12B)
1 x SparkFun 9 Degrees of Freedom – Sensor Stick
1 x Lithium Ion Battery – 1 Ah
1 x SparkFun FTDI Basic Breakout – 5V
1 x SparkFun Cerberus USB Cable
Moteino R2 (Receive)
TR0 – Digital 2
LED – Digital 9
TR1 – Digital 10
TR2 – Digital 11
TR3 – Digital 12
TR4 – Digital 13
VIN – +3.3V
GND – GND
——
DL2211Mk08pr.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - FreeIMU - Mk04 26-04 Receive DL2211Mk08pr.ino 2 x Moteino R2 (RFM12B) 1 x SparkFun 9 Degrees of Freedom - Sensor Stick 1 x Lithium Ion Battery - 1Ah 1 x SparkFun FTDI Basic Breakout - 5V 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // RFM12B Radio #include <RFM12B.h> // You will need to initialize the radio by telling it what ID // it has and what network it's on // The NodeID takes values from 1-127, 0 is reserved for sending // broadcast messages (send to all nodes) // The Network ID takes values from 0-255 // By default the SPI-SS line used is D10 on Atmega328. // You can change it by calling .SetCS(pin) where pin can be {8,9,10} // Network ID used for this unit #define NODEID 1 // The network ID we are on #define NETWORKID 99 // Serial #define SERIAL_BAUD 115200 // Encryption is OPTIONAL // to enable encryption you will need to: // - provide a 16-byte encryption KEY (same on all nodes that talk encrypted) // - to call .Encrypt(KEY) to start encrypting // - to stop encrypting call .Encrypt(NULL) uint8_t KEY[] = "ABCDABCDABCDABCD"; // Need an instance of the RFM12B Radio Module RFM12B radio; // LED int iLED = 9; // Software Version Information String sver = "26-04"; void loop() { // is RFM12B Radio isRFM12BRadio(); }
getRFM12BRadio.ino
// RFM12B Radio void isSetupRFM12BRadio() { // RFM12B Radio radio.Initialize(NODEID, RF12_433MHZ, NETWORKID); // Encryption radio.Encrypt(KEY); // Transmitting Serial.println("Listening..."); } // is RFM12 BRadio void isRFM12BRadio() { // Receive if (radio.ReceiveComplete()) { // CRC Pass if (radio.CRCPass()) { // Serial Serial.print('['); Serial.print(radio.GetSender()); Serial.print("] "); // Can also use radio.GetDataLen() if you don't like pointers for (byte i = 0; i < *radio.DataLen; i++) { Serial.print((char)radio.Data[i]); } // Turn the LED on HIGH digitalWrite( iLED , HIGH); // ACK Requested if (radio.ACKRequested()) { // Send ACK radio.SendACK(); Serial.print(" - ACK Sent"); } // Turn the LED on LOW digitalWrite( iLED , LOW); } else { // BAD-CRC Serial.print("BAD-CRC"); } // Serial Serial.println(); } }
setup.ino
// Setup void setup() { // Serial Serial.begin(SERIAL_BAUD); // LED pinMode( iLED , OUTPUT); // RFM12B Radio isSetupRFM12BRadio(); }
Moteino R2 (Send)
TR0 – Digital 2
LED – Digital 9
TR1 – Digital 10
TR2 – Digital 11
TR3 – Digital 12
TR4 – Digital 13
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND
——
DL2211Mk08ps.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - FreeIMU - Mk04 26-04 Send DL2211Mk08ps.ino 2 x Moteino R2 (RFM12B) 1 x SparkFun 9 Degrees of Freedom - Sensor Stick 1 x Lithium Ion Battery - 1Ah 1 x SparkFun FTDI Basic Breakout - 5V 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // RFM12B Radio #include <RFM12B.h> // Sleep #include <avr/sleep.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Includes and variables for IMU integration // Accelerometer #include <ADXL345.h> // Magnetometer #include <HMC58X3.h> // MEMS Gyroscope #include <ITG3200.h> // Debug #include "DebugUtils.h" // FreeIMU #include <CommunicationUtils.h> #include <FreeIMU.h> // You will need to initialize the radio by telling it what ID // it has and what network it's on // The NodeID takes values from 1-127, 0 is reserved for sending // broadcast messages (send to all nodes) // The Network ID takes values from 0-255 // By default the SPI-SS line used is D10 on Atmega328. // You can change it by calling .SetCS(pin) where pin can be {8,9,10} // Network ID used for this unit #define NODEID 2 // The network ID we are on #define NETWORKID 99 // The node ID we're sending to #define GATEWAYID 1 // # of ms to wait for an ack #define ACK_TIME 50 // Serial #define SERIAL_BAUD 115200 // Encryption is OPTIONAL // to enable encryption you will need to: // - provide a 16-byte encryption KEY (same on all nodes that talk encrypted) // - to call .Encrypt(KEY) to start encrypting // - to stop encrypting call .Encrypt(NULL) uint8_t KEY[] = "ABCDABCDABCDABCD"; // Wait this many ms between sending packets int interPacketDelay = 1000; // Input char input = 0; // Need an instance of the RFM12B Radio Module RFM12B radio; // Send Size byte sendSize = 0; // Payload char payload[100]; // Request ACK bool requestACK = false; // LED int iLED = 9; // Set the FreeIMU object FreeIMU my3IMU = FreeIMU(); // Yaw Pitch Roll String zzzzzz = ""; String sYaw = ""; String sPitch = ""; String sRoll = ""; float ypr[3]; float Yaw = 0; float Pitch = 0; float Roll = 0; // Software Version Information String sver = "26-04"; void loop() { // isFreeIMU isFreeIMU(); // is RFM12B Radio isRFM12BRadio(); // Inter Packet Delay delay(interPacketDelay); }
getFreeIMU.ino
// FreeIMU // isFreeIMU void isFreeIMU(){ // FreeIMU // Yaw Pitch Roll my3IMU.getYawPitchRoll(ypr); // Yaw Yaw = ypr[0]; // Pitch Pitch = ypr[1]; // Roll Roll = ypr[2]; }
getRFM12BRadio.ino
// RFM12B Radio void isSetupRFM12BRadio(){ // RFM12B Radio radio.Initialize(NODEID, RF12_433MHZ, NETWORKID); // Encryption radio.Encrypt(KEY); // Sleep right away to save power radio.Sleep(); // Transmitting Serial.println("Transmitting...\n\n"); } // is RFM12 BRadio void isRFM12BRadio(){ // sYaw, sPitch, sRoll "" sYaw = ""; sPitch = ""; sRoll = ""; // sYaw, sPitch, sRoll concat sYaw.concat(Yaw); sPitch.concat(Pitch); sRoll.concat(Roll); // zzzzzz "" zzzzzz = ""; // zzzzzz = "<IMU|" + sYaw + "|" + sPitch + "|" + sRoll + "|*" zzzzzz = "<IMU|" + sYaw + "|" + sPitch + "|" + sRoll + "|*"; // sendSize Length sendSize = zzzzzz.length(); // sendSize payload[sendSize]; // sendSize, charAt for(byte i = 0; i < sendSize+1; i++){ payload[i] = zzzzzz.charAt(i); } // payload Serial.print(payload); // Request ACK requestACK = sendSize; // Wakeup radio.Wakeup(); // Turn the LED on HIGH digitalWrite( iLED , HIGH); // Send radio.Send(GATEWAYID, payload, sendSize, requestACK); // Request ACK if (requestACK) { Serial.print(" - waiting for ACK..."); if (waitForAck()){ Serial.print("Ok!"); } else Serial.print("nothing..."); } // Turn the LED on LOW digitalWrite( iLED , LOW); // Sleep radio.Sleep(); // Serial Serial.println(); } // Wait a few milliseconds for proper ACK, return true if received static bool waitForAck(){ // Now long now = millis(); // ACK while (millis() - now <= ACK_TIME){ if (radio.ACKReceived(GATEWAYID)){ return true; } } return false; }
setup.ino
// Setup void setup(){ // Serial Serial.begin(SERIAL_BAUD); // LED pinMode( iLED , OUTPUT); // Set up I2C bus Wire.begin(); // RFM12B Radio isSetupRFM12BRadio(); // Pause delay(5); // Initialize IMU my3IMU.init(); // Pause delay(5); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Programming and Coding
——
#DonLucElectronics #DonLuc #SparkFunRedBoard #Coding #Movement #9DOF #Magnetometer #Accelerometer #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
Programming and Coding
Most of the development in the world is all because of technology. Technology has grown much faster than everything else. All the technology is developed because of coding and programming. Programming and coding hold a vital role in development. It also includes developments from small projects to big projects.
The programming vs coding difference lies in the very definition of both processes. Programming is the general process of creating a program that follows certain standards and performs a certain task. Coding, on the other hand, is a part of programming that deals strictly with converting the language we understand into binary commands for the machine.
As we have discussed before in our discussion on programming vs coding, coding is just a part of programming. Yet, it still requires some time and skill to learn. Programming languages are very different from natural languages, and their syntax can sometimes be very confusing. The hardest languages are low-level ones that are close to actual processor instructions.
Programming
Programmers, on the other hand, need to review documentation and perform analysis besides coding which requires extra tools. You can find various code analysis tools, code generators, databases and testing frameworks in their inventory. Programming is passing the instructions and information to the computer that describes how a program should be carried out. Programming helps computers to perform certain actions. Various types of programming languages available in the market, like C, C++, Java, Python, etc., help develop new and creative technology.
Coding
Since coding is a simple act of translation, you don’t need much to perform it. In most cases, a simple text editor would suffice. Coding is a process of establishing a successful communication between a software program and the computer hardware. The compilers translate the program into assembly language. The coding process converts the assembly language to Binary Coded Signals.
Computer systems are electronic devices that rely on binary coded signals for communication and functioning. The two types of binary coded signals are o’s and 1’s. These signals are generated using switches and transistors. In the process of coding the high-level language and the assembly level languages are translated into binary codes and the communication between the computer hardware and software application is established.
Microcontrollers – Arduino IDE
Since the launch of the Arduino open-source platform, the brand has established themselves at the center of an expansive open-source community. The Arduino ecosystem is comprised of a diverse combination of hardware and software. The versatility of Arduino and its simple interface makes it a leading choice for a wide range of users around the world from hobbyists, designers, and artists to product prototypes.
Arduino code is written in C++ with an addition of special methods and functions, which we’ll mention later on. C++ is a human-readable programming language. When you create a “Sketch”, the name given to Arduino code files. The Arduino Integrated Development Environment (IDE) is the main text editing program used for Arduino programming. It is where you’ll be typing up your code before uploading it to the board you want to program. Arduino coding it is processed and compiled to machine language.
DL2211Mk03
1 x SparkFun RedBoard Qwiic
1 x SparkFun Micro OLED (Qwiic)
1 x Qwiic Cable – 100mm
1 x SparkFun 9 Degrees of Freedom – Sensor Stick
1 x SparkFun Cerberus USB Cable
SparkFun RedBoard Qwiic
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND
——
DL2211Mk03p.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #25 - Movement - 9-DOF - Mk04 25-04 DL2210Mk06p.ino 1 x SparkFun RedBoard Qwiic 1 x SparkFun Micro OLED (Qwiic) 1 x Qwiic Cable - 100mm 1 x SparkFun 9 Degrees of Freedom - Sensor Stick 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // Two Wire Interface (TWI/I2C) #include <Wire.h> // SparkFun Micro OLED #include <SFE_MicroOLED.h> // Includes and variables for IMU integration // Accelerometer #include <ADXL345.h> // Magnetometer #include <HMC58X3.h> // MEMS Gyroscope #include <ITG3200.h> // Debug #include "DebugUtils.h" // FreeIMU #include <CommunicationUtils.h> #include <FreeIMU.h> // Set the FreeIMU object FreeIMU my3IMU = FreeIMU(); // Yaw Pitch Roll float ypr[3]; float Yaw = 0; float Pitch = 0; float Roll = 0; // SparkFun Micro OLED #define PIN_RESET 9 #define DC_JUMPER 1 // I2C declaration MicroOLED oled(PIN_RESET, DC_JUMPER); // Software Version Information String sver = "25-04"; void loop() { // isFreeIMU isFreeIMU(); // Micro OLED isMicroOLED(); // One delay in between reads delay(1000); }
getFreeIMU.ino
// FreeIMU // isFreeIMU void isFreeIMU(){ // FreeIMU // Yaw Pitch Roll my3IMU.getYawPitchRoll(ypr); // Yaw Yaw = ypr[0]; // Pitch Pitch = ypr[1]; // Roll Roll = ypr[2]; }
getMicroOLED.ino
// SparkFun Micro OLED // Setup Micro OLED void isSetupMicroOLED() { // Initialize the OLED oled.begin(); // Clear the display's internal memory oled.clear(ALL); // Display what's in the buffer (splashscreen) oled.display(); // Delay 1000 ms delay(1000); // Clear the buffer. oled.clear(PAGE); } // Micro OLED void isMicroOLED() { // Text Display FreeIMU // Clear the display oled.clear(PAGE); // Set cursor to top-left oled.setCursor(0, 0); // Set font to type 0 oled.setFontType(0); // FreeIMU oled.print("FreeIMU"); oled.setCursor(0, 12); // Yaw oled.print("Y: "); oled.print(Yaw); oled.setCursor(0, 25); // Pitch oled.print("P: "); oled.print(Pitch); oled.setCursor(0, 39); // Roll oled.print("R: "); oled.print(Roll); oled.display(); }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // Set up I2C bus Wire.begin(); // Setup Micro OLED isSetupMicroOLED(); // Pause delay(5); // Initialize IMU my3IMU.init(); // Pause delay(5); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #25 – Movement – Quaternion – Mk06
——
#DonLucElectronics #DonLuc #SparkFunRedBoard #Movement #MPU9150 #9DOF #Quaternion #Magnetometer #Accelerometer #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
Quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space, as the quotient of two vectors. Multiplication of quaternions is noncommutative.
Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, and crystallographic texture analysis. They can be used alongside other methods of rotation, such as Euler angles and rotation matrices, or as an alternative to them, depending on the application.
SparkFun 9 Degrees of Freedom Breakout – MPU-9150
The SparkFun 9DOF MPU-9150 is the world’s first 9-axis MotionTracking MEMS device designed for the low power, low cost, and high performance requirements of consumer electronics equipment including smartphones, tablets and wearable sensors. And guess what? You get to play with it.
This breakout board makes it easy to prototype with the InvenSense MPU-9150 by breaking out all the pins you need to standard 0.1″ spaced headers. The board also provides I2C pullup resistors and a solder jumper to switch the I2C address of the device.
The MPU-9150 is a System in Package (SiP) that combines two chips: the MPU-6050, which contains a 3-axis gyroscope, 3-axis accelerometer, and an onboard Digital Motion Processor™ (DMP™) capable of processing complex MotionFusion algorithms; and the AK8975, a 3-axis digital compass. The part’s integrated 6-axis MotionFusion algorithms access all internal sensors to gather a full set of sensor data.
DL2211Mk02
1 x SparkFun RedBoard Qwiic
1 x SparkFun 9 Degrees of Freedom Breakout – MPU-9150
1 x SparkFun Cerberus USB Cable
SparkFun RedBoard Qwiic
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND
——
DL2211Mk02p.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #25 - Movement - Quaternion - Mk06 25-06 DL2211Mk02p.ino 1 x SparkFun RedBoard Qwiic 1 1 x SparkFun 9 Degrees of Freedom Breakout - MPU-9150 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // Two Wire Interface (TWI/I2C) #include <Wire.h> // I2CDev I2C utilities #include "I2Cdev.h" // MPU9150Lib 9-axis fusion #include "MPU9150Lib.h" // CalLib magnetometer and accelerometer calibration #include "CalLib.h" // Motion Driver InvenSense Embedded SDK v5.1 #include <dmpKey.h> #include <dmpmap.h> #include <inv_mpu.h> #include <inv_mpu_dmp_motion_driver.h> // EEPROM Magnetometer and Accelerometer data is stored #include <EEPROM.h> // the MPU object MPU9150Lib MPU; // MPU_UPDATE_RATE defines the rate (in Hz) // at which the MPU updates the sensor data and DMP output #define MPU_UPDATE_RATE (20) // MAG_UPDATE_RATE defines the rate (in Hz) at which the // MPU updates the magnetometer data // MAG_UPDATE_RATE should be less than or equal to the MPU_UPDATE_RATE #define MAG_UPDATE_RATE (10) // MPU_MAG_MIX defines the influence that the magnetometer has on the yaw output. // The magnetometer itself is quite noisy so some mixing with the gyro yaw can help // significantly. Some example values are defined below: // Just use gyro yaw #define MPU_MAG_MIX_GYRO_ONLY 0 // Just use magnetometer and no gyro yaw #define MPU_MAG_MIX_MAG_ONLY 1 // A good mix value #define MPU_MAG_MIX_GYRO_AND_MAG 10 // mainly gyros with a bit of mag correction #define MPU_MAG_MIX_GYRO_AND_SOME_MAG 50 // MPU_LPF_RATE is the low pas filter rate and can be between 5 and 188Hz #define MPU_LPF_RATE 5 // This is our earth frame gravity vector - quaternions and vectors MPUQuaternion gravity; // SERIAL_PORT_SPEED defines the speed to use for the debug serial port #define SERIAL_PORT_SPEED 115200 // Software Version Information String sver = "25-06"; void loop() { // MPU isMPU(); }
getMPU.ino
// MPU // Setup MPU void isSetupMPU() { // MPU MPU.init(MPU_UPDATE_RATE, MPU_MAG_MIX_GYRO_AND_MAG, MAG_UPDATE_RATE, MPU_LPF_RATE); // start the MPU // Set up the initial gravity vector for quaternion rotation // Max value down the z axis gravity[QUAT_W] = 0; gravity[QUAT_X] = 0; gravity[QUAT_Y] = 0; gravity[QUAT_Z] = SENSOR_RANGE; } // MPU void isMPU() { // Quaternion // This is our body frame gravity vector MPUQuaternion rotatedGravity; // This is the conjugate of the fused quaternion MPUQuaternion fusedConjugate; // Used in the rotation MPUQuaternion qTemp; // The accelerations MPUVector3 result; // Get the latest data if (MPU.read()) { // Need this for the rotation MPUQuaternionConjugate(MPU.m_fusedQuaternion, fusedConjugate); // Rotate the gravity vector into the body frame MPUQuaternionMultiply(gravity, MPU.m_fusedQuaternion, qTemp); MPUQuaternionMultiply(fusedConjugate, qTemp, rotatedGravity); // Now subtract rotated gravity from the body accels to get real accelerations. // Note that signs are reversed to get +ve acceleration results // in the conventional axes. result[VEC3_X] = -(MPU.m_calAccel[VEC3_X] - rotatedGravity[QUAT_X]); result[VEC3_Y] = -(MPU.m_calAccel[VEC3_Y] - rotatedGravity[QUAT_Y]); result[VEC3_Z] = -(MPU.m_calAccel[VEC3_Z] - rotatedGravity[QUAT_Z]); // print the residual accelerations MPU.printVector(result); Serial.println(); } }
setup.ino
// Setup void setup() { // Serial Serial.begin(SERIAL_PORT_SPEED); Serial.println("Accel9150 starting"); // Give display time to power on delay(100); // Set up I2C bus Wire.begin(); // Setup MPU isSetupMPU(); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor and E-Mentor
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #25 – Movement – 9-DOF – Mk04
——
#DonLucElectronics #DonLuc #SparkFunRedBoard #Movement #9DOF #Accelerometer #Magnetometer #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
Roll, Pitch, and Yaw
How is Controlling an Airplane or Robotic Different than Controlling a Car or Boat?
Stability and control are much more complex for an airplane, which can move freely in three dimensions, than for cars or boats, which only move in two. A change in any one of the three types of motion affects the other two.
Imagine three lines running through an airplane and intersecting at right angles at the airplane’s center of gravity.
- Rotation around the front-to-back axis is called Roll.
- Rotation around the side-to-side axis is called Pitch.
- Rotation around the vertical axis is called Yaw.
SparkFun 9 Degrees of Freedom – Sensor Stick
The SparkFun 9DOF Sensor Stick is a very small sensor board with 9 degrees of freedom. It includes the ADXL345 accelerometer, the HMC5883L magnetometer, and the ITG-3200 MEMS gyro. The “Stick” has a simple I2C interface and a mounting hole for attaching it to your project. Also, the board is a mere allowing it to be easily mounted in just about any application.
DL2210Mk08
1 x SparkFun RedBoard Qwiic
1 x SparkFun Micro OLED (Qwiic)
1 x Qwiic Cable – 100mm
1 x SparkFun 9 Degrees of Freedom – Sensor Stick
1 x SparkFun Cerberus USB Cable
SparkFun RedBoard Qwiic
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND
——
DL2210Mk08p.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #25 - Movement - 9-DOF - Mk04 25-04 DL2210Mk06p.ino 1 x SparkFun RedBoard Qwiic 1 x SparkFun Micro OLED (Qwiic) 1 x Qwiic Cable - 100mm 1 x SparkFun 9 Degrees of Freedom - Sensor Stick 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // Two Wire Interface (TWI/I2C) #include <Wire.h> // SparkFun Micro OLED #include <SFE_MicroOLED.h> // Includes and variables for IMU integration // Accelerometer #include <ADXL345.h> // Magnetometer #include <HMC58X3.h> // MEMS Gyroscope #include <ITG3200.h> // Debug #include "DebugUtils.h" // FreeIMU #include <CommunicationUtils.h> #include <FreeIMU.h> // Set the FreeIMU object FreeIMU my3IMU = FreeIMU(); // Yaw Pitch Roll float ypr[3]; float Yaw = 0; float Pitch = 0; float Roll = 0; // SparkFun Micro OLED #define PIN_RESET 9 #define DC_JUMPER 1 // I2C declaration MicroOLED oled(PIN_RESET, DC_JUMPER); // Software Version Information String sver = "25-04"; void loop() { // isFreeIMU isFreeIMU(); // Micro OLED isMicroOLED(); // One delay in between reads delay(1000); }
getFreeIMU.ino
// FreeIMU // isFreeIMU void isFreeIMU(){ // FreeIMU // Yaw Pitch Roll my3IMU.getYawPitchRoll(ypr); // Yaw Yaw = ypr[0]; // Pitch Pitch = ypr[1]; // Roll Roll = ypr[2]; }
getMicroOLED.ino
// SparkFun Micro OLED // Setup Micro OLED void isSetupMicroOLED() { // Initialize the OLED oled.begin(); // Clear the display's internal memory oled.clear(ALL); // Display what's in the buffer (splashscreen) oled.display(); // Delay 1000 ms delay(1000); // Clear the buffer. oled.clear(PAGE); } // Micro OLED void isMicroOLED() { // Text Display FreeIMU // Clear the display oled.clear(PAGE); // Set cursor to top-left oled.setCursor(0, 0); // Set font to type 0 oled.setFontType(0); // FreeIMU oled.print("FreeIMU"); oled.setCursor(0, 12); // Yaw oled.print("Y: "); oled.print(Yaw); oled.setCursor(0, 25); // Pitch oled.print("P: "); oled.print(Pitch); oled.setCursor(0, 39); // Roll oled.print("R: "); oled.print(Roll); oled.display(); }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // Set up I2C bus Wire.begin(); // Setup Micro OLED isSetupMicroOLED(); // Pause delay(5); // Initialize IMU my3IMU.init(); // Pause delay(5); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor and E-Mentor
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2022
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #25 – Movement – Gyroscope L3G4200D – Mk03
——
#DonLucElectronics #DonLuc #SparkFunRedBoard #Movement #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
Gyroscope
A gyroscope is a device used for measuring or maintaining orientation and angular velocity.It is a spinning wheel or disc in which the axis of rotation is free to assume any orientation by itself. When rotating, the orientation of this axis is unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum.
Gyroscopes based on other operating principles also exist, such as the microchip-packaged MEMS gyroscopes found in electronic devices, solid-state ring lasers, fibre optic gyroscopes, and the extremely sensitive quantum gyroscope. MEMS gyroscopes are popular in some consumer electronics, such as smartphones.
SparkFun Tri-Axis Gyro Breakout – L3G4200D
This is a breakout board for the L3G4200D low-power three-axis angular rate sensor. The L3G4200D is a MEMS motion sensor and has a full scale of ±250 or ±500 or ±2000 dps and is capable of measuring rates with a user selectable bandwidth. These work great in gaming and virtual reality input devices, GPS navigation systems and robotics.
DL2210Mk07
1 x SparkFun RedBoard Qwiic
1 x SparkFun Micro OLED (Qwiic)
1 x Qwiic Cable – 100mm
1 x SparkFun Tri-Axis Gyro Breakout – L3G4200D
1 x SparkFun Cerberus USB Cable
SparkFun RedBoard Qwiic
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND
DL2210Mk07p.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #25 - Movement - Gyroscope L3G4200D - Mk03 25-02 DL2210Mk06p.ino 1 x SparkFun RedBoard Qwiic 1 x SparkFun Micro OLED (Qwiic) 1 x Qwiic Cable - 100mm 1 x SparkFun Tri-Axis Gyro Breakout - L3G4200D 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // Two Wire Interface (TWI/I2C) #include <Wire.h> // SparkFun Micro OLED #include <SFE_MicroOLED.h> // Gyroscope #include <L3G4200D.h> // Gyroscope L3G4200D gyroscope; // Timers unsigned long timer = 0; float timeStep = 0.01; // Pitch, Roll and Yaw values float pitch = 0; float roll = 0; float yaw = 0; // SparkFun Micro OLED #define PIN_RESET 9 #define DC_JUMPER 1 // I2C declaration MicroOLED oled(PIN_RESET, DC_JUMPER); // Software Version Information String sver = "25-03"; void loop() { // Gyroscope isGyroscope(), // Micro OLED isMicroOLED(); // Wait to full timeStep period delay((timeStep*1000) - (millis() - timer)); }
getGyroscope.ino
// L3G4200D Triple Axis Gyroscope // Setup Gyroscope void isSetupGyroscope() { // Setup Gyroscope // Set scale 2000 dps and 400HZ Output data rate (cut-off 50) while(!gyroscope.begin(L3G4200D_SCALE_2000DPS, L3G4200D_DATARATE_400HZ_50)) { // Could not find a valid L3G4200D sensor, check wiring! delay(500); } // Calibrate gyroscope. The calibration must be at rest. // If you don't want calibrate, comment this line. gyroscope.calibrate(100); } // L3G4200D Gyroscope void isGyroscope(){ // Timer timer = millis(); // Read normalized values Vector norm = gyroscope.readNormalize(); // Calculate Pitch, Roll and Yaw pitch = pitch + norm.YAxis * timeStep; roll = roll + norm.XAxis * timeStep; yaw = yaw + norm.ZAxis * timeStep; }
getMicroOLED.ino
// SparkFun Micro OLED // Setup Micro OLED void isSetupMicroOLED() { // Initialize the OLED oled.begin(); // Clear the display's internal memory oled.clear(ALL); // Display what's in the buffer (splashscreen) oled.display(); // Delay 1000 ms delay(1000); // Clear the buffer. oled.clear(PAGE); } // Micro OLED void isMicroOLED() { // Text Display Gyroscope // Clear the display oled.clear(PAGE); // Set cursor to top-left oled.setCursor(0, 0); // Set font to type 0 oled.setFontType(0); // Gyroscope oled.print("Gyro"); oled.setCursor(0, 12); // X oled.print("Pit: "); oled.print(pitch); oled.setCursor(0, 25); // Y oled.print("Rol: "); oled.print(roll); oled.setCursor(0, 39); // Z oled.print("Yaw: "); oled.print(yaw); oled.display(); }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // Set up I2C bus Wire.begin(); // Setup Micro OLED isSetupMicroOLED(); // L3G4200D Gyroscope isSetupGyroscope(); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor and E-Mentor
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2022
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc