Gyroscope
Project #28 – Sensors – Pololu MinIMU-9 v5 – Mk04
——
#DonLucElectronics #DonLuc #Sensors #MinIMU9 #Pololu #Adafruit #SparkFun #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
Pololu MinIMU-9 v5 Gyro, Accelerometer, and Compass (LSM6DS33 and LIS3MDL Carrier)
The Pololu MinIMU-9 v5 is an inertial measurement unit (IMU) that packs an LSM6DS33 3-axis gyro and 3-axis accelerometer and an LIS3MDL 3-axis magnetometer onto a tiny 0.8″ × 0.5″ board. An I²C interface accesses nine independent rotation, acceleration, and magnetic measurements that can be used to calculate the sensor’s absolute orientation. The MinIMU-9 v5 board includes a voltage regulator and a level-shifting circuit that allow operation from 2.5 to 5.5 Volt.
DL2308Mk05
1 x Adafruit METRO M0 Express
1 x DS3231 Precision RTC FeatherWing
1 x Pololu MinIMU-9 v5 Gyro, Accelerometer, and Compass
1 x ProtoScrewShield
1 x Rocker Switch – SPST
1 x Resistor 10K Ohm
1 x CR1220 3V Lithium Coin Cell Battery
1 x SparkFun Cerberus USB Cable
Adafruit METRO M0 Express
LED – LED_BUILTIN
SDA – Digital 20
SCL – Digital 21
SW1 – Digital 2
VIN – +3.3V
GND – GND
——
DL2308Mk05p.ino
/****** Don Luc Electronics © ****** Software Version Information Project #28 - Sensors - Pololu MinIMU-9 v5 - Mk04 28-04 DL2308Mk05p.ino 1 x Adafruit METRO M0 Express 1 x DS3231 Precision RTC FeatherWing 1 x Pololu MinIMU-9 v5 Gyro, Accelerometer, and Compass 1 x ProtoScrewShield 1 x Rocker Switch - SPST 1 x Resistor 10K Ohm 1 x CR1220 3V Lithium Coin Cell Battery 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // DS3231 Precision RTC #include <RTClib.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Keyboard #include <Keyboard.h> // Includes and variables for IMU integration // STMicroelectronics LSM6DS33 Gyroscope and Accelerometer #include <LSM6.h> // STMicroelectronics LIS3MDL Magnetometer #include <LIS3MDL.h> // Keyboard String sKeyboard = ""; // DS3231 Precision RTC RTC_DS3231 rtc; String dateRTC = ""; String timeRTC = ""; // Pololu 9DoF IMU // STMicroelectronics LSM6DS33 Gyroscope and Accelerometer LSM6 imu; // Accelerometer and Gyroscopes // Accelerometer int imuAX; int imuAY; int imuAZ; // Gyroscopes int imuGX; int imuGY; int imuGZ; // STMicroelectronics LIS3MDL Magnetometer LIS3MDL mag; // Magnetometer int magX; int magY; int magZ; // The number of the pushbutton pin int iButton = 2; // Variable for reading the button status int buttonState = 0; // Software Version Information String sver = "28-04"; void loop() { // Date and Time RTC isRTC (); // Pololu Accelerometer and Gyroscopes isIMU(); // Pololu Magnetometer isMag(); // Read the state of the button value: buttonState = digitalRead(iButton); // Check if the button is pressed. If it is, the buttonState is HIGH: if (buttonState == HIGH) { Keyboard.println(sKeyboard); } // Delay 1 Second delay(1000); }
getAccelGyro.ino
// Accelerometer and Gyroscopes // Setup IMU void setupIMU() { // Setup IMU imu.init(); // Default imu.enableDefault(); } // Accelerometer and Gyroscopes void isIMU() { // Accelerometer and Gyroscopes imu.read(); // Accelerometer x, y, z imuAX = imu.a.x; imuAY = imu.a.y; imuAZ = imu.a.z; // Gyroscopes x, y, z imuGX = imu.g.x; imuGY = imu.g.y; imuGZ = imu.g.z; sKeyboard = sKeyboard + String(imuAX) + "|" + String(imuAY) + "|" + String(imuAZ) + "|"; sKeyboard = sKeyboard + String(imuGX) + "|" + String(imuGY) + "|" + String(imuGZ) + "|"; }
getIMUMagnetometer.ino
// IMU Magnetometer // Setup Magnetometer void setupMag() { // Setup Magnetometer mag.init(); // Default mag.enableDefault(); } // Magnetometer void isMag() { // Magnetometer mag.read(); // Magnetometer x, y, z magX = mag.m.x; magY = mag.m.y; magZ = mag.m.z; sKeyboard = sKeyboard + String(magX) + "|" + String(magY) + "|" + String(magZ) + "|*"; }
getRTC.ino
// Date & Time // DS3231 Precision RTC void setupRTC() { // DS3231 Precision RTC if (! rtc.begin()) { //Serial.println("Couldn't find RTC"); //Serial.flush(); while (1) delay(10); } if (rtc.lostPower()) { //Serial.println("RTC lost power, let's set the time!"); // When time needs to be set on a new device, or after a power loss, the // following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: //rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0)); } } // Date and Time RTC void isRTC () { // Date and Time dateRTC = ""; timeRTC = ""; DateTime now = rtc.now(); // Date dateRTC = now.year(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.month(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.day(), DEC; // Time timeRTC = now.hour(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.minute(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.second(), DEC; sKeyboard = "SEN|" + sver + "|" + String(dateRTC) + "|" + String(timeRTC) + "|"; }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // Wire - Inialize I2C Hardware Wire.begin(); // Give display time to power on delay(100); // Date & Time RTC // DS3231 Precision RTC setupRTC(); // Initialize control over the keyboard: Keyboard.begin(); // Pololu Setup IMU setupIMU(); // Pololu Setup Magnetometer setupMag(); // Initialize the button pin as an input pinMode(iButton, INPUT); // Initialize digital pin LED_BUILTIN as an output pinMode(LED_BUILTIN, OUTPUT); // Turn the LED on HIGH digitalWrite(LED_BUILTIN, HIGH); // Delay 5 Second delay( 5000 ); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- Programming Language
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #28 – Sensors – Gyroscope L3G4200D – Mk03
——
#DonLucElectronics #DonLuc #Sensors #L3G4200D #HMC5883L #ADXL335 #Adafruit #SparkFun #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
SparkFun Tri-Axis Gyroscope – L3G4200D
This is a breakout board for the L3G4200D low-power three-axis angular rate sensor. The L3G4200D is a MEMS motion sensor and has a full scale of dps and is capable of measuring rates with a user-selectable bandwidth. These work great in gaming and virtual reality input devices, motion control with MMI, GPS navigation systems, appliances and robotics. The L3G4200D is a low-power three-axis angular rate sensor able to provide unprecedented stablility of zero rate level and sensitivity over temperature and time. It includes a sensing element and an IC interface capable of providing the measured angular rate to the external world through a digital interface.
DL2308Mk04
1 x Adafruit METRO M0 Express
1 x DS3231 Precision RTC FeatherWing
1 x SparkFun Triple Axis Accelerometer ADXL335
1 x SparkFun Triple Axis Magnetometer – HMC5883L
1 x SparkFun Tri-Axis Gyroscope – L3G4200D
1 x Rocker Switch – SPST
1 x Resistor 10K Ohm
1 x CR1220 3V Lithium Coin Cell Battery
1 x SparkFun Cerberus USB Cable
Adafruit METRO M0 Express
LED – LED_BUILTIN
SDA – Digital 20
SCL – Digital 21
SW1 – Digital 2
ACX – Analog A0
ACY – Analog A1
ACZ – Analog A2
VIN – +3.3V
GND – GND
——
DL2308Mk04p.ino
/****** Don Luc Electronics © ****** Software Version Information Project #28 - Sensors - Gyroscope L3G4200D - Mk03 28-03 DL2308Mk04p.ino 1 x Adafruit METRO M0 Express 1 x DS3231 Precision RTC FeatherWing 1 x SparkFun Triple Axis Accelerometer ADXL335 1 x SparkFun Tri-Axis Gyroscope - L3G4200D 1 x Rocker Switch - SPST 1 x Resistor 10K Ohm 1 x CR1220 3V Lithium Coin Cell Battery 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // DS3231 Precision RTC #include <RTClib.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Keyboard #include <Keyboard.h> // Triple Axis Magnetometer #include <HMC5883L.h> // Gyroscope #include <L3G4200D.h> // Keyboard String sKeyboard = ""; // DS3231 Precision RTC RTC_DS3231 rtc; String dateRTC = ""; String timeRTC = ""; // Accelerometer int iX = A0; int iY = A1; int iZ = A2; // Accelerometer int X = 0; int Y = 0; int Z = 0; // Triple Axis Magnetometer HMC5883L compass; // Triple Axis Magnetometer int mX = 0; int mY = 0; int mZ = 0; // Gyroscope L3G4200D gyroscope; // Timers unsigned long timer = 0; float timeStep = 0.01; // Pitch, Roll and Yaw values float pitch = 0; float roll = 0; float yaw = 0; // The number of the pushbutton pin int iButton = 2; // Variable for reading the button status int buttonState = 0; // Software Version Information String sver = "28-03"; void loop() { // Date and Time RTC isRTC (); // Accelerometer isAccelerometer(); // Magnetometer isMagnetometer(); // Gyroscope isGyroscope(); // Read the state of the button value: buttonState = digitalRead(iButton); // Check if the button is pressed. If it is, the buttonState is HIGH: if (buttonState == HIGH) { Keyboard.println(sKeyboard); } // Delay 1 Second delay(1000); }
getAccelerometer.ino
// Accelerometer // Accelerometer void isAccelerometer(){ // Accelerometer X, Y, Z // X X = analogRead(iX); // Y Y = analogRead(iY); // Z Z = analogRead(iZ); sKeyboard = sKeyboard + String(X) + "|" + String(Y) + "|" + String(Z) + "|"; }
getGyroscope.ino
// L3G4200D Triple Axis Gyroscope // Setup Gyroscope void isSetupGyroscope() { // Setup Gyroscope // Set scale 2000 dps and 400HZ Output data rate (cut-off 50) while(!gyroscope.begin(L3G4200D_SCALE_2000DPS, L3G4200D_DATARATE_400HZ_50)) { // Could not find a valid L3G4200D sensor, check wiring! delay(500); } // Calibrate gyroscope. The calibration must be at rest. // If you don't want calibrate, comment this line. gyroscope.calibrate(100); } // L3G4200D Gyroscope void isGyroscope(){ // Timer timer = millis(); // Read normalized values Vector norm = gyroscope.readNormalize(); // Calculate Pitch, Roll and Yaw pitch = pitch + norm.YAxis * timeStep; roll = roll + norm.XAxis * timeStep; yaw = yaw + norm.ZAxis * timeStep; sKeyboard = sKeyboard + String(pitch) + "|" + String(roll) + "|" + String(yaw) + "|*"; }
getMagnetometer.ino
// Magnetometer // Setup Magnetometer void isSetupMagnetometer(){ // Magnetometer Serial // Initialize HMC5883L while (!compass.begin()) { delay(500); } // Set measurement range // +/- 1.30 Ga: HMC5883L_RANGE_1_3GA (default) compass.setRange(HMC5883L_RANGE_1_3GA); // Set measurement mode // Continuous-Measurement: HMC5883L_CONTINOUS (default) compass.setMeasurementMode(HMC5883L_CONTINOUS); // Set data rate // 15.00Hz: HMC5883L_DATARATE_15HZ (default) compass.setDataRate(HMC5883L_DATARATE_15HZ); // Set number of samples averaged // 1 sample: HMC5883L_SAMPLES_1 (default) compass.setSamples(HMC5883L_SAMPLES_1); } // Magnetometer void isMagnetometer(){ // Vector Norm Vector norm = compass.readNormalize(); // Vector X, Y, Z // X Normalize mX = norm.XAxis; // Y Normalize mY = norm.YAxis; // Z Normalize mZ = norm.ZAxis; sKeyboard = sKeyboard + String(mX) + "|" + String(mY) + "|" + String(mZ) + "|"; }
getRTC.ino
// Date & Time // DS3231 Precision RTC void setupRTC() { // DS3231 Precision RTC if (! rtc.begin()) { //Serial.println("Couldn't find RTC"); //Serial.flush(); while (1) delay(10); } if (rtc.lostPower()) { //Serial.println("RTC lost power, let's set the time!"); // When time needs to be set on a new device, or after a power loss, the // following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: //rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0)); } } // Date and Time RTC void isRTC () { // Date and Time dateRTC = ""; timeRTC = ""; DateTime now = rtc.now(); // Date dateRTC = now.year(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.month(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.day(), DEC; // Time timeRTC = now.hour(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.minute(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.second(), DEC; sKeyboard = "SEN|" + sver + "|" + String(dateRTC) + "|" + String(timeRTC) + "|"; }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // Wire - Inialize I2C Hardware Wire.begin(); // Give display time to power on delay(100); // Date & Time RTC // DS3231 Precision RTC setupRTC(); // Initialize control over the keyboard: Keyboard.begin(); // Setup Triple Axis Magnetometer isSetupMagnetometer(); // L3G4200D Gyroscope isSetupGyroscope(); // Initialize the button pin as an input pinMode(iButton, INPUT); // Initialize digital pin LED_BUILTIN as an output pinMode(LED_BUILTIN, OUTPUT); // Turn the LED on HIGH digitalWrite(LED_BUILTIN, HIGH); // Delay 5 Second delay( 5000 ); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- Programming Language
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #26 – Radio Frequency – Bluetooth Serial Terminal for Windows 10 – Mk25
——
#DonLucElectronics #DonLuc #RadioFrequency #Bluetooth #GPS #SparkFun #BME280 #CCS811 #IMU #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
Bluetooth Serial Terminal for Windows 10
You can use this App to communicate with Serial Bluetooth devices like the RN-42, ESP32, that are used for arduino projects and other custom projects. Make sure to pair the device first in PC Settings.
- Use the rfcomm protocol to communicate with serial bluetooth devices.
- You can send and recieve data in either hex or string format.
- UI more responsive while updating terminal.
- Bytes that do not have proper ascii mapping are converted to space characters.
- Transmit data is displayed on terminal if it is successfully sent.
- Communicate with Serial Bluetooth devices.
DL2307Mk06
1 x SparkFun Thing Plus – ESP32 WROOM
1 x Bluetooth Serial Terminal for Windows 10
1 x SparkFun BME280 – Temperature, Humidity, Barometric Pressure, and Altitude
1 x SparkFun Air Quality Breakout – CCS811
1 x Pololu AltIMU-10 v5
1 x GPS Receiver – GP-20U7
1 x Lithium Ion Battery – 850mAh
1 x SparkFun Cerberus USB Cable
SparkFun Thing Plus – ESP32 WROOM
LED – LED_BUILTIN
SDA – Digital 23
SCL – Digital 22
GPR – Digital 16
GPT – Digital 17
RX2 – Bluetooth
TX2 – Bluetooth
VIN – +3.3V
GND – GND
——
DL2307Mk06ps.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - Bluetooth Serial Terminal for Windows 10 - Mk25 26-25 DL2307Mk06p.ino 1 x SparkFun Thing Plus - ESP32 WROOM 1 x Bluetooth Serial Terminal for Windows 10 1 x SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude 1 x SparkFun Air Quality Breakout - CCS811 1 x Pololu AltIMU-10 v5 1 x GPS Receiver - GP-20U7 1 x Lithium Ion Battery - 85mAh 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // Bluetooth Serial #include "BluetoothSerial.h" #if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED) #error Bluetooth is not enabled! Please run `make menuconfig` to and enable it #endif // Two Wire Interface (TWI/I2C) #include <Wire.h> // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude #include <SparkFunBME280.h> // SparkFun CCS811 - eCO2 & tVOC #include <SparkFunCCS811.h> // Includes and variables for IMU integration // STMicroelectronics LSM6DS33 gyroscope and accelerometer #include <LSM6.h> // STMicroelectronics LIS3MDL magnetometer #include <LIS3MDL.h> // STMicroelectronics LPS25H digital barometer #include <LPS.h> // GPS Receiver #include <TinyGPS++.h> // ESP32 Hardware Serial #include <HardwareSerial.h> // Bluetooth Serial BluetoothSerial SerialBT; // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude BME280 myBME280; float BMEtempC = 0; float BMEhumid = 0; float BMEpressure = 0; float BMEaltitudeM = 0; String FullString = ""; // SparkFun CCS811 - eCO2 & tVOC // Default I2C Address #define CCS811_ADDR 0x5B CCS811 myCCS811(CCS811_ADDR); float CCS811CO2 = 0; float CCS811TVOC = 0; String FullStringA = ""; // 9DoF IMU // STMicroelectronics LSM6DS33 gyroscope and accelerometer LSM6 imu; // Accelerometer and Gyroscopes // Accelerometer int imuAX; int imuAY; int imuAZ; String FullStringB = ""; // Gyroscopes int imuGX; int imuGY; int imuGZ; String FullStringC = ""; // STMicroelectronics LIS3MDL magnetometer LIS3MDL mag; // Magnetometer int magX; int magY; int magZ; String FullStringD = ""; // STMicroelectronics LPS25H digital barometer LPS ps; // Digital Barometer float pressure; float altitude; float temperature; String FullStringF = ""; // ESP32 HardwareSerial HardwareSerial tGPS(2); // GPS Receiver #define gpsRXPIN 16 // This one is unused and doesnt have a conection #define gpsTXPIN 17 // The TinyGPS++ object TinyGPSPlus gps; // Latitude float TargetLat; // Longitude float TargetLon; String FullStringG = ""; // GPS Date, Time, Speed, Altitude // GPS Date String TargetDat; // GPS Time String TargetTim; // GPS Speeds M/S String TargetSMS; // GPS Speeds Km/h String TargetSKH; // GPS Altitude Meters String TargetALT; // GPS Status String GPSSt = ""; String FullStringH = ""; // Software Version Information String sver = "26-25"; void loop() { // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude isBME280(); // SparkFun CCS811 - eCO2 & tVOC isCCS811(); // Accelerometer and Gyroscopes isIMU(); // Magnetometer isMag(); // Barometer isBarometer(); // isGPS isGPS(); // Delay 1 sec delay(1000); }
getAccelGyro.ino
// Accelerometer and Gyroscopes // Setup IMU void setupIMU() { // Setup IMU imu.init(); // Default imu.enableDefault(); } // Accelerometer and Gyroscopes void isIMU() { // Accelerometer and Gyroscopes imu.read(); // Accelerometer x, y, z imuAX = imu.a.x; imuAY = imu.a.y; imuAZ = imu.a.z; // Gyroscopes x, y, z imuGX = imu.g.x; imuGY = imu.g.y; imuGZ = imu.g.z; // FullString B FullStringB = "Accelerometer X = " + String(imuAX) + " Accelerometer Y = " + String(imuAY) + " Accelerometer Z = " + String(imuAZ) + "\r\n"; // FullStringB Bluetooth Serial + Serial for(int i = 0; i < FullStringB.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringB.c_str()[i]); // Serial Serial.write(FullStringB.c_str()[i]); } // FullString C FullStringC = "Gyroscopes X = " + String(imuGX) + " Gyroscopes Y = " + String(imuGY) + " Gyroscopes Z = " + String(imuGZ) + "\r\n"; // FullStringC Bluetooth Serial + Serial for(int i = 0; i < FullStringC.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringC.c_str()[i]); // Serial Serial.write(FullStringC.c_str()[i]); } }
getBME280.ino
// SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude // isBME280 - Temperature, Humidity, Barometric Pressure, and Altitude void isBME280(){ // Temperature Celsius BMEtempC = myBME280.readTempC(); // Humidity BMEhumid = myBME280.readFloatHumidity(); // Barometric Pressure BMEpressure = myBME280.readFloatPressure(); // Altitude Meters BMEaltitudeM = (myBME280.readFloatAltitudeMeters(), 2); // FullString FullString = "Temperature = " + String(BMEtempC,2) + " Humidity = " + String(BMEhumid,2) + " Barometric = " + String(BMEpressure,2) + " Altitude Meters = " + String(BMEaltitudeM,2) + "\r\n"; // FullString Bluetooth Serial + Serial for(int i = 0; i < FullString.length(); i++) { // Bluetooth Serial SerialBT.write(FullString.c_str()[i]); // Serial Serial.write(FullString.c_str()[i]); } }
getBarometer.ino
// STMicroelectronics LPS25H digital barometer // Setup Barometer void isSetupBarometer(){ // Setup Barometer ps.init(); // Default ps.enableDefault(); } // Barometer void isBarometer(){ // Barometer pressure = ps.readPressureMillibars(); // Altitude Meters altitude = ps.pressureToAltitudeMeters(pressure); // Temperature Celsius temperature = ps.readTemperatureC(); // FullStringF FullStringF = "Barometer = " + String(pressure,2) + " Altitude Meters = " + String(altitude,2) + " Temperature Celsius = " + String(temperature,2) + "\r\n"; // FullStringF Bluetooth Serial + Serial for(int i = 0; i < FullStringF.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringF.c_str()[i]); // Serial Serial.write(FullStringF.c_str()[i]); } }
getCCS811.ino
// CCS811 - eCO2 & tVOC // isCCS811 - eCO2 & tVOC void isCCS811(){ // This sends the temperature & humidity data to the CCS811 myCCS811.setEnvironmentalData(BMEhumid, BMEtempC); // Calling this function updates the global tVOC and eCO2 variables myCCS811.readAlgorithmResults(); // eCO2 Concentration CCS811CO2 = myCCS811.getCO2(); // tVOC Concentration CCS811TVOC = myCCS811.getTVOC(); // FullStringA FullStringA = "TVOCs = " + String(CCS811TVOC,2) + " eCO2 = " + String(CCS811CO2,2) + "\r\n"; // FullStringA Bluetooth Serial + Serial for(int i = 0; i < FullStringA.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringA.c_str()[i]); // Serial Serial.write(FullStringA.c_str()[i]); } }
getGPS.ino
// GPS Receiver // Setup GPS void setupGPS() { // Setup GPS tGPS.begin( 9600 , SERIAL_8N1 , gpsRXPIN , gpsTXPIN ); } // isGPS void isGPS(){ // Receives NEMA data from GPS receiver // This sketch displays information every time a new sentence is correctly encoded while ( tGPS.available() > 0) if (gps.encode( tGPS.read() )) { // GPS Vector Pointer Target displayInfo(); // GPS Date, Time, Speed, Altitude displayDTS(); } if (millis() > 5000 && gps.charsProcessed() < 10) { while(true); } } // GPS Vector Pointer Target void displayInfo(){ // Location if (gps.location.isValid()) { // Latitude TargetLat = gps.location.lat(); // Longitude TargetLon = gps.location.lng(); // GPS Status 2 GPSSt = "Yes"; // FullStringG FullStringG = "Latitude = " + String(TargetLat) + " Longitude = " + String(TargetLon) + "\r\n"; // FullStringG Bluetooth Serial + Serial for(int i = 0; i < FullStringG.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringG.c_str()[i]); // Serial Serial.write(FullStringG.c_str()[i]); } } else { // GPS Status 0 GPSSt = "No"; } } // GPS Date, Time, Speed, Altitude void displayDTS(){ // Date TargetDat = ""; if (gps.date.isValid()) { // Date // Year TargetDat += String(gps.date.year(), DEC); TargetDat += "/"; // Month TargetDat += String(gps.date.month(), DEC); TargetDat += "/"; // Day TargetDat += String(gps.date.day(), DEC); // FullStringH FullStringH = "Date = " + String(TargetDat) + "\r\n"; // FullStringH Bluetooth Serial + Serial for(int i = 0; i < FullStringH.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringH.c_str()[i]); // Serial Serial.write(FullStringH.c_str()[i]); } } // Time TargetTim = ""; if (gps.time.isValid()) { // Time // Hour TargetTim += String(gps.time.hour(), DEC); TargetTim += ":"; // Minute TargetTim += String(gps.time.minute(), DEC); TargetTim += ":"; // Secound TargetTim += String(gps.time.second(), DEC); // FullStringH FullStringH = "Time = " + String(TargetTim) + "\r\n"; // FullStringH Bluetooth Serial + Serial for(int i = 0; i < FullStringH.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringH.c_str()[i]); // Serial Serial.write(FullStringH.c_str()[i]); } } // Speed TargetSMS = ""; TargetSKH = ""; if (gps.speed.isValid()) { // Speed // M/S int x = gps.speed.mps(); TargetSMS = String( x, DEC); // Km/h int y = gps.speed.kmph(); TargetSKH = String( y, DEC); // FullStringH FullStringH = "Speed = " + String(TargetSMS) + "\r\n"; // FullStringH Bluetooth Serial + Serial for(int i = 0; i < FullStringH.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringH.c_str()[i]); // Serial Serial.write(FullStringH.c_str()[i]); } } // Altitude TargetALT = ""; if (gps.altitude.isValid()) { // Altitude // Meters int z = gps.altitude.meters(); TargetALT = String( z, DEC); // FullStringH FullStringH = "Altitude = " + String(TargetALT) + "\r\n"; // FullStringH Bluetooth Serial + Serial for(int i = 0; i < FullStringH.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringH.c_str()[i]); // Serial Serial.write(FullStringH.c_str()[i]); } } }
getMagnetometer.ino
// Magnetometer // Setup Magnetometer void setupMag() { // Setup Magnetometer mag.init(); // Default mag.enableDefault(); } // Magnetometer void isMag() { // Magnetometer mag.read(); // Magnetometer x, y, z magX = mag.m.x; magY = mag.m.y; magZ = mag.m.z; // FullString D FullStringD = "Magnetometer X = " + String(magX) + " Magnetometer Y = " + String(magY) + " Magnetometer Z = " + String(magZ) + "\r\n"; // FullStringD Bluetooth Serial + Serial for(int i = 0; i < FullStringD.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringD.c_str()[i]); // Serial Serial.write(FullStringD.c_str()[i]); } }
setup.ino
// Setup void setup() { // Serial Begin Serial.begin(115200); Serial.println("Starting BLE work!"); // Bluetooth Serial SerialBT.begin("Don Luc Electronics"); Serial.println("Bluetooth Started! Ready to pair..."); // Give display time to power on delay(100); // Wire - Inialize I2C Hardware Wire.begin(); // Give display time to power on delay(100); // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude myBME280.begin(); // CCS811 - eCO2 & tVOC myCCS811.begin(); // Setup IMU setupIMU(); // Setup Magnetometer setupMag(); // Setup Barometer isSetupBarometer(); // GPS Receiver // Setup GPS setupGPS(); // Initialize digital pin LED_BUILTIN as an output pinMode(LED_BUILTIN, OUTPUT); // Turn the LED on HIGH digitalWrite(LED_BUILTIN, HIGH); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- Programming Language
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #26 – Radio Frequency – Bluetooth GPS Receiver GP-20U7 – Mk24
——
#DonLucElectronics #DonLuc #RadioFrequency #Bluetooth #GPS #SparkFun #BME280 #CCS811 #IMU #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
GPS Receiver – GP-20U7 (56 Channel)
The GP-20U7 is a compact GPS receiver with a built-in high performances all-in-one GPS chipset. The GP-20U7 accurately provides position, velocity, and time readings as well possessing high sensitivity and tracking capabilities. Thanks to the low power consumption this receiver requires, the GP-20U7 is ideal for portable applications such as tablet PCs, smart phones, and other devices requiring positioning capability. With 56 channels in search mode and 22 channels “All-In-View” tracking, the GP-20U7 is quite the work horse for its size.
DL2307Mk05
1 x SparkFun Thing Plus – ESP32 WROOM
1 x Arduino Uno
1 x SparkFun Bluetooth Mate Silver
1 x SparkFun BME280 – Temperature, Humidity, Barometric Pressure, and Altitude
1 x SparkFun Air Quality Breakout – CCS811
1 x Pololu AltIMU-10 v5
1 x GPS Receiver – GP-20U7
1 x Lithium Ion Battery – 850mAh
2 x SparkFun Cerberus USB Cable
SparkFun Thing Plus – ESP32 WROOM
LED – LED_BUILTIN
SDA – Digital 23
SCL – Digital 22
GPR – Digital 16
GPT – Digital 17
RX2 – Bluetooth
TX2 – Bluetooth
VIN – +3.3V
GND – GND
——
DL2307Mk05ps.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - Bluetooth GPS Receiver GP-20U7 - Mk24 26-24 DL2307Mk05pr.ino 1 x SparkFun Thing Plus - ESP32 WROOM 1 x Arduino Uno 1 x SparkFun Bluetooth Mate Silver 1 x SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude 1 x SparkFun Air Quality Breakout - CCS811 1 x Pololu AltIMU-10 v5 1 x GPS Receiver - GP-20U7 1 x Lithium Ion Battery - 85mAh 2 x SparkFun Cerberus USB Cable */ // Include the Library Code // Bluetooth Serial #include "BluetoothSerial.h" #if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED) #error Bluetooth is not enabled! Please run `make menuconfig` to and enable it #endif // Two Wire Interface (TWI/I2C) #include <Wire.h> // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude #include <SparkFunBME280.h> // SparkFun CCS811 - eCO2 & tVOC #include <SparkFunCCS811.h> // Includes and variables for IMU integration // STMicroelectronics LSM6DS33 gyroscope and accelerometer #include <LSM6.h> // STMicroelectronics LIS3MDL magnetometer #include <LIS3MDL.h> // STMicroelectronics LPS25H digital barometer #include <LPS.h> // GPS Receiver #include <TinyGPS++.h> // ESP32 Hardware Serial #include <HardwareSerial.h> // Bluetooth Serial BluetoothSerial SerialBT; // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude BME280 myBME280; float BMEtempC = 0; float BMEhumid = 0; float BMEpressure = 0; float BMEaltitudeM = 0; String FullString = ""; // SparkFun CCS811 - eCO2 & tVOC // Default I2C Address #define CCS811_ADDR 0x5B CCS811 myCCS811(CCS811_ADDR); float CCS811CO2 = 0; float CCS811TVOC = 0; String FullStringA = ""; // 9DoF IMU // STMicroelectronics LSM6DS33 gyroscope and accelerometer LSM6 imu; // Accelerometer and Gyroscopes // Accelerometer int imuAX; int imuAY; int imuAZ; String FullStringB = ""; // Gyroscopes int imuGX; int imuGY; int imuGZ; String FullStringC = ""; // STMicroelectronics LIS3MDL magnetometer LIS3MDL mag; // Magnetometer int magX; int magY; int magZ; String FullStringD = ""; // STMicroelectronics LPS25H digital barometer LPS ps; // Digital Barometer float pressure; float altitude; float temperature; String FullStringF = ""; // ESP32 HardwareSerial HardwareSerial tGPS(2); // GPS Receiver #define gpsRXPIN 16 // This one is unused and doesnt have a conection #define gpsTXPIN 17 // The TinyGPS++ object TinyGPSPlus gps; // Latitude float TargetLat; // Longitude float TargetLon; String FullStringG = ""; // GPS Date, Time, Speed, Altitude // GPS Date String TargetDat; // GPS Time String TargetTim; // GPS Speeds M/S String TargetSMS; // GPS Speeds Km/h String TargetSKH; // GPS Altitude Meters String TargetALT; // GPS Status String GPSSt = ""; String FullStringH = ""; // Software Version Information String sver = "26-24"; void loop() { // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude isBME280(); // SparkFun CCS811 - eCO2 & tVOC isCCS811(); // Accelerometer and Gyroscopes isIMU(); // Magnetometer isMag(); // Barometer isBarometer(); // isGPS isGPS(); // Delay 1 sec delay(1000); }
getAccelGyro.ino
// Accelerometer and Gyroscopes // Setup IMU void setupIMU() { // Setup IMU imu.init(); // Default imu.enableDefault(); } // Accelerometer and Gyroscopes void isIMU() { // Accelerometer and Gyroscopes imu.read(); // Accelerometer x, y, z imuAX = imu.a.x; imuAY = imu.a.y; imuAZ = imu.a.z; // Gyroscopes x, y, z imuGX = imu.g.x; imuGY = imu.g.y; imuGZ = imu.g.z; // FullString B FullStringB = "Accelerometer X = " + String(imuAX) + " Accelerometer Y = " + String(imuAY) + " Accelerometer Z = " + String(imuAZ) + "\r\n"; // FullStringB Bluetooth Serial + Serial for(int i = 0; i < FullStringB.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringB.c_str()[i]); // Serial Serial.write(FullStringB.c_str()[i]); } // FullString C FullStringC = "Gyroscopes X = " + String(imuGX) + " Gyroscopes Y = " + String(imuGY) + " Gyroscopes Z = " + String(imuGZ) + "\r\n"; // FullStringC Bluetooth Serial + Serial for(int i = 0; i < FullStringC.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringC.c_str()[i]); // Serial Serial.write(FullStringC.c_str()[i]); } }
getBME280.ino
// SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude // isBME280 - Temperature, Humidity, Barometric Pressure, and Altitude void isBME280(){ // Temperature Celsius BMEtempC = myBME280.readTempC(); // Humidity BMEhumid = myBME280.readFloatHumidity(); // Barometric Pressure BMEpressure = myBME280.readFloatPressure(); // Altitude Meters BMEaltitudeM = (myBME280.readFloatAltitudeMeters(), 2); // FullString FullString = "Temperature = " + String(BMEtempC,2) + " Humidity = " + String(BMEhumid,2) + " Barometric = " + String(BMEpressure,2) + " Altitude Meters = " + String(BMEaltitudeM,2) + "\r\n"; // FullString Bluetooth Serial + Serial for(int i = 0; i < FullString.length(); i++) { // Bluetooth Serial SerialBT.write(FullString.c_str()[i]); // Serial Serial.write(FullString.c_str()[i]); } }
getBarometer.ino
// STMicroelectronics LPS25H digital barometer // Setup Barometer void isSetupBarometer(){ // Setup Barometer ps.init(); // Default ps.enableDefault(); } // Barometer void isBarometer(){ // Barometer pressure = ps.readPressureMillibars(); // Altitude Meters altitude = ps.pressureToAltitudeMeters(pressure); // Temperature Celsius temperature = ps.readTemperatureC(); // FullStringF FullStringF = "Barometer = " + String(pressure,2) + " Altitude Meters = " + String(altitude,2) + " Temperature Celsius = " + String(temperature,2) + "\r\n"; // FullStringF Bluetooth Serial + Serial for(int i = 0; i < FullStringF.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringF.c_str()[i]); // Serial Serial.write(FullStringF.c_str()[i]); } }
getCCS811.ino
// CCS811 - eCO2 & tVOC // isCCS811 - eCO2 & tVOC void isCCS811(){ // This sends the temperature & humidity data to the CCS811 myCCS811.setEnvironmentalData(BMEhumid, BMEtempC); // Calling this function updates the global tVOC and eCO2 variables myCCS811.readAlgorithmResults(); // eCO2 Concentration CCS811CO2 = myCCS811.getCO2(); // tVOC Concentration CCS811TVOC = myCCS811.getTVOC(); // FullStringA FullStringA = "TVOCs = " + String(CCS811TVOC,2) + " eCO2 = " + String(CCS811CO2,2) + "\r\n"; // FullStringA Bluetooth Serial + Serial for(int i = 0; i < FullStringA.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringA.c_str()[i]); // Serial Serial.write(FullStringA.c_str()[i]); } }
getGPS.ino
// GPS Receiver // Setup GPS void setupGPS() { // Setup GPS tGPS.begin( 9600 , SERIAL_8N1 , gpsRXPIN , gpsTXPIN ); } // isGPS void isGPS(){ // Receives NEMA data from GPS receiver // This sketch displays information every time a new sentence is correctly encoded while ( tGPS.available() > 0) if (gps.encode( tGPS.read() )) { // GPS Vector Pointer Target displayInfo(); // GPS Date, Time, Speed, Altitude displayDTS(); } if (millis() > 5000 && gps.charsProcessed() < 10) { while(true); } } // GPS Vector Pointer Target void displayInfo(){ // Location if (gps.location.isValid()) { // Latitude TargetLat = gps.location.lat(); // Longitude TargetLon = gps.location.lng(); // GPS Status 2 GPSSt = "Yes"; // FullStringG FullStringG = "Latitude = " + String(TargetLat) + " Longitude = " + String(TargetLon) + "\r\n"; // FullStringG Bluetooth Serial + Serial for(int i = 0; i < FullStringG.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringG.c_str()[i]); // Serial Serial.write(FullStringG.c_str()[i]); } } else { // GPS Status 0 GPSSt = "No"; } } // GPS Date, Time, Speed, Altitude void displayDTS(){ // Date TargetDat = ""; if (gps.date.isValid()) { // Date // Year TargetDat += String(gps.date.year(), DEC); TargetDat += "/"; // Month TargetDat += String(gps.date.month(), DEC); TargetDat += "/"; // Day TargetDat += String(gps.date.day(), DEC); // FullStringH FullStringH = "Date = " + String(TargetDat) + "\r\n"; // FullStringH Bluetooth Serial + Serial for(int i = 0; i < FullStringH.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringH.c_str()[i]); // Serial Serial.write(FullStringH.c_str()[i]); } } // Time TargetTim = ""; if (gps.time.isValid()) { // Time // Hour TargetTim += String(gps.time.hour(), DEC); TargetTim += ":"; // Minute TargetTim += String(gps.time.minute(), DEC); TargetTim += ":"; // Secound TargetTim += String(gps.time.second(), DEC); // FullStringH FullStringH = "Time = " + String(TargetTim) + "\r\n"; // FullStringH Bluetooth Serial + Serial for(int i = 0; i < FullStringH.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringH.c_str()[i]); // Serial Serial.write(FullStringH.c_str()[i]); } } // Speed TargetSMS = ""; TargetSKH = ""; if (gps.speed.isValid()) { // Speed // M/S int x = gps.speed.mps(); TargetSMS = String( x, DEC); // Km/h int y = gps.speed.kmph(); TargetSKH = String( y, DEC); // FullStringH FullStringH = "Speed = " + String(TargetSMS) + "\r\n"; // FullStringH Bluetooth Serial + Serial for(int i = 0; i < FullStringH.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringH.c_str()[i]); // Serial Serial.write(FullStringH.c_str()[i]); } } // Altitude TargetALT = ""; if (gps.altitude.isValid()) { // Altitude // Meters int z = gps.altitude.meters(); TargetALT = String( z, DEC); // FullStringH FullStringH = "Altitude = " + String(TargetALT) + "\r\n"; // FullStringH Bluetooth Serial + Serial for(int i = 0; i < FullStringH.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringH.c_str()[i]); // Serial Serial.write(FullStringH.c_str()[i]); } } }
getMagnetometer.ino
// Magnetometer // Setup Magnetometer void setupMag() { // Setup Magnetometer mag.init(); // Default mag.enableDefault(); } // Magnetometer void isMag() { // Magnetometer mag.read(); // Magnetometer x, y, z magX = mag.m.x; magY = mag.m.y; magZ = mag.m.z; // FullString D FullStringD = "Magnetometer X = " + String(magX) + " Magnetometer Y = " + String(magY) + " Magnetometer Z = " + String(magZ) + "\r\n"; // FullStringD Bluetooth Serial + Serial for(int i = 0; i < FullStringD.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringD.c_str()[i]); // Serial Serial.write(FullStringD.c_str()[i]); } }
setup.ino
// Setup void setup() { // Serial Begin Serial.begin(9600); Serial.println("Starting BLE work!"); // Bluetooth Serial SerialBT.begin("Don Luc Electronics"); Serial.println("Bluetooth Started! Ready to pair..."); // Give display time to power on delay(100); // Wire - Inialize I2C Hardware Wire.begin(); // Give display time to power on delay(100); // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude myBME280.begin(); // CCS811 - eCO2 & tVOC myCCS811.begin(); // Setup IMU setupIMU(); // Setup Magnetometer setupMag(); // Setup Barometer isSetupBarometer(); // GPS Receiver // Setup GPS setupGPS(); // Initialize digital pin LED_BUILTIN as an output pinMode(LED_BUILTIN, OUTPUT); // Turn the LED on HIGH digitalWrite(LED_BUILTIN, HIGH); }
——
Arduino Uno
RX – Digital 3
TX – Digital 2
VIN – +3.3V
GND – GND
——
DL2307Mk05pr.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - Bluetooth GPS Receiver GP-20U7 - Mk24 26-24 DL2307Mk05pr.ino 1 x Arduino Uno 1 x SparkFun RedBoard Qwiic 1 x SparkFun Bluetooth Mate Silver 1 x SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude 1 x SparkFun Air Quality Breakout - CCS811 1 x Pololu AltIMU-10 v5 1 x GPS Receiver - GP-20U7 1 x Lithium Ion Battery - 85mAh 2 x SparkFun Cerberus USB Cable */ // Include the Library Code // Software Serial #include <SoftwareSerial.h> // Software Serial // TX-O pin of bluetooth mate, Arduino D2 int bluetoothTx = 2; // RX-I pin of bluetooth mate, Arduino D3 int bluetoothRx = 3; // Bluetooth SoftwareSerial bluetooth(bluetoothTx, bluetoothRx); // BTA //String BTA = "0006664FDC9E"; // Software Version Information String sver = "26-24"; void loop() { // isBluetooth isBluetooth(); }
getBluetooth.ino
// Bluetooth // Setup Bluetooth void isSetupBluetooth(){ // Setup Bluetooth // Begin the serial monitor at 9600bps Serial.begin(9600); // Bluetooth // The Bluetooth Mate defaults to 115200bps bluetooth.begin(115200); // Print three times individually bluetooth.print("$"); bluetooth.print("$"); bluetooth.print("$"); // Enter command mode // Short delay, wait for the Mate to send back CMD delay(100); // Temporarily Change the baudrate to 9600, no parity bluetooth.println("U,9600,N"); // 115200 can be too fast at times for NewSoftSerial to relay the data reliably // Start bluetooth serial at 9600 bluetooth.begin(9600); } // isBluetooth void isBluetooth() { // If the bluetooth sent any characters if(bluetooth.available()) { // Send any characters the bluetooth prints to the serial monitor Serial.print((char)bluetooth.read()); } // If stuff was typed in the serial monitor if(Serial.available()) { // Send any characters the Serial monitor prints to the bluetooth bluetooth.print((char)Serial.read()); } }
setup.ino
// Setup void setup() { // Setup Bluetooth isSetupBluetooth(); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- Programming Language
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #26 – Radio Frequency – Bluetooth Pololu AltIMU-10 – Mk23
——
#DonLucElectronics #DonLuc #RadioFrequency #Bluetooth #SparkFun #BME280 #CCS811 #IMU #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
AltIMU-10 v5 Gyro, Accelerometer, Compass, and Altimeter
The Pololu AltIMU-10 v5 is an inertial measurement unit (IMU) and altimeter that features the same LSM6DS33 gyro and accelerometer and LIS3MDL magnetometer as the MinIMU-9 v5, and adds an LPS25H digital barometer. An I²C interface accesses ten independent pressure, rotation, acceleration, and magnetic measurements that can be used to calculate the sensor’s altitude and absolute orientation. The Pololu AltIMU-10 v5 is a compact board that combines ST’s LSM6DS33 3-axis gyroscope and 3-axis accelerometer, LIS3MDL 3-axis magnetometer, and LPS25H digital barometer to form an inertial measurement unit (IMU) and altimeter.
DL2307Mk04
1 x SparkFun Thing Plus – ESP32 WROOM
1 x Arduino Uno
1 x SparkFun Bluetooth Mate Silver
1 x SparkFun BME280 – Temperature, Humidity, Barometric Pressure, and Altitude
1 x SparkFun Air Quality Breakout – CCS811
1 x Pololu AltIMU-10 v5
1 x Lithium Ion Battery – 850mAh
2 x SparkFun Cerberus USB Cable
SparkFun Thing Plus – ESP32 WROOM
LED – LED_BUILTIN
SDA – Digital 23
SCL – Digital 22
RX2 – Bluetooth
TX2 – Bluetooth
VIN – +3.3V
GND – GND
——
DL2307Mk04ps.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - Bluetooth Pololu AltIMU-10 - Mk23 26-23 DL2307Mk04pr.ino 1 x SparkFun Thing Plus - ESP32 WROOM 1 x Arduino Uno 1 x SparkFun Bluetooth Mate Silver 1 x SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude 1 x SparkFun Air Quality Breakout - CCS811 1 x Pololu AltIMU-10 v5 1 x Lithium Ion Battery - 85mAh 2 x SparkFun Cerberus USB Cable */ // Include the Library Code // Bluetooth Serial #include "BluetoothSerial.h" #if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED) #error Bluetooth is not enabled! Please run `make menuconfig` to and enable it #endif // Two Wire Interface (TWI/I2C) #include <Wire.h> // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude #include <SparkFunBME280.h> // SparkFun CCS811 - eCO2 & tVOC #include <SparkFunCCS811.h> // Includes and variables for IMU integration // STMicroelectronics LSM6DS33 gyroscope and accelerometer #include <LSM6.h> // STMicroelectronics LIS3MDL magnetometer #include <LIS3MDL.h> // STMicroelectronics LPS25H digital barometer #include <LPS.h> // Bluetooth Serial BluetoothSerial SerialBT; // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude BME280 myBME280; float BMEtempC = 0; float BMEhumid = 0; float BMEpressure = 0; float BMEaltitudeM = 0; String FullString = ""; // SparkFun CCS811 - eCO2 & tVOC // Default I2C Address #define CCS811_ADDR 0x5B CCS811 myCCS811(CCS811_ADDR); float CCS811CO2 = 0; float CCS811TVOC = 0; String FullStringA = ""; // 9DoF IMU // STMicroelectronics LSM6DS33 gyroscope and accelerometer LSM6 imu; // Accelerometer and Gyroscopes // Accelerometer int imuAX; int imuAY; int imuAZ; String FullStringB = ""; // Gyroscopes int imuGX; int imuGY; int imuGZ; String FullStringC = ""; // STMicroelectronics LIS3MDL magnetometer LIS3MDL mag; // Magnetometer int magX; int magY; int magZ; String FullStringD = ""; // STMicroelectronics LPS25H digital barometer LPS ps; // Digital Barometer float pressure; float altitude; float temperature; String FullStringF = ""; // Software Version Information String sver = "26-23"; void loop() { // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude isBME280(); // SparkFun CCS811 - eCO2 & tVOC isCCS811(); // Accelerometer and Gyroscopes isIMU(); // Magnetometer isMag(); // Barometer isBarometer(); // Delay 1 sec delay(1000); }
getAccelGyro.ino
// Accelerometer and Gyroscopes // Setup IMU void setupIMU() { // Setup IMU imu.init(); // Default imu.enableDefault(); } // Accelerometer and Gyroscopes void isIMU() { // Accelerometer and Gyroscopes imu.read(); // Accelerometer x, y, z imuAX = imu.a.x; imuAY = imu.a.y; imuAZ = imu.a.z; // Gyroscopes x, y, z imuGX = imu.g.x; imuGY = imu.g.y; imuGZ = imu.g.z; // FullString B FullStringB = "Accelerometer X = " + String(imuAX) + " Accelerometer Y = " + String(imuAY) + " Accelerometer Z = " + String(imuAZ) + "\r\n"; // FullStringB Bluetooth Serial + Serial for(int i = 0; i < FullStringB.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringB.c_str()[i]); // Serial Serial.write(FullStringB.c_str()[i]); } // FullString C FullStringC = "Gyroscopes X = " + String(imuGX) + " Gyroscopes Y = " + String(imuGY) + " Gyroscopes Z = " + String(imuGZ) + "\r\n"; // FullStringC Bluetooth Serial + Serial for(int i = 0; i < FullStringC.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringC.c_str()[i]); // Serial Serial.write(FullStringC.c_str()[i]); } }
getBME280.ino
// SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude // isBME280 - Temperature, Humidity, Barometric Pressure, and Altitude void isBME280(){ // Temperature Celsius BMEtempC = myBME280.readTempC(); // Humidity BMEhumid = myBME280.readFloatHumidity(); // Barometric Pressure BMEpressure = myBME280.readFloatPressure(); // Altitude Meters BMEaltitudeM = (myBME280.readFloatAltitudeMeters(), 2); // FullString FullString = "Temperature = " + String(BMEtempC,2) + " Humidity = " + String(BMEhumid,2) + " Barometric = " + String(BMEpressure,2) + " Altitude Meters = " + String(BMEaltitudeM,2) + "\r\n"; // FullString Bluetooth Serial + Serial for(int i = 0; i < FullString.length(); i++) { // Bluetooth Serial SerialBT.write(FullString.c_str()[i]); // Serial Serial.write(FullString.c_str()[i]); } }
getBarometer.ino
// STMicroelectronics LPS25H digital barometer // Setup Barometer void isSetupBarometer(){ // Setup Barometer ps.init(); // Default ps.enableDefault(); } // Barometer void isBarometer(){ // Barometer pressure = ps.readPressureMillibars(); // Altitude Meters altitude = ps.pressureToAltitudeMeters(pressure); // Temperature Celsius temperature = ps.readTemperatureC(); // FullStringF FullStringF = "Barometer = " + String(pressure,2) + " Altitude Meters = " + String(altitude,2) + " Temperature Celsius = " + String(temperature,2) + "\r\n"; // FullStringF Bluetooth Serial + Serial for(int i = 0; i < FullStringF.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringF.c_str()[i]); // Serial Serial.write(FullStringF.c_str()[i]); } }
getCCS811.ino
// CCS811 - eCO2 & tVOC // isCCS811 - eCO2 & tVOC void isCCS811(){ // This sends the temperature & humidity data to the CCS811 myCCS811.setEnvironmentalData(BMEhumid, BMEtempC); // Calling this function updates the global tVOC and eCO2 variables myCCS811.readAlgorithmResults(); // eCO2 Concentration CCS811CO2 = myCCS811.getCO2(); // tVOC Concentration CCS811TVOC = myCCS811.getTVOC(); // FullStringA FullStringA = "TVOCs = " + String(CCS811TVOC,2) + " eCO2 = " + String(CCS811CO2,2) + "\r\n"; // FullStringA Bluetooth Serial + Serial for(int i = 0; i < FullStringA.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringA.c_str()[i]); // Serial Serial.write(FullStringA.c_str()[i]); } }
getMagnetometer.ino
// Magnetometer // Setup Magnetometer void setupMag() { // Setup Magnetometer mag.init(); // Default mag.enableDefault(); } // Magnetometer void isMag() { // Magnetometer mag.read(); // Magnetometer x, y, z magX = mag.m.x; magY = mag.m.y; magZ = mag.m.z; // FullString D FullStringD = "Magnetometer X = " + String(magX) + " Magnetometer Y = " + String(magY) + " Magnetometer Z = " + String(magZ) + "\r\n"; // FullStringD Bluetooth Serial + Serial for(int i = 0; i < FullStringD.length(); i++) { // Bluetooth Serial SerialBT.write(FullStringD.c_str()[i]); // Serial Serial.write(FullStringD.c_str()[i]); } }
setup.ino
// Setup void setup() { // Serial Begin Serial.begin(9600); Serial.println("Starting BLE work!"); // Bluetooth Serial SerialBT.begin("Don Luc Electronics"); Serial.println("Bluetooth Started! Ready to pair..."); // Give display time to power on delay(100); // Wire - Inialize I2C Hardware Wire.begin(); // Give display time to power on delay(100); // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude myBME280.begin(); // CCS811 - eCO2 & tVOC myCCS811.begin(); // Setup IMU setupIMU(); // Setup Magnetometer setupMag(); // Setup Barometer isSetupBarometer(); // Initialize digital pin LED_BUILTIN as an output pinMode(LED_BUILTIN, OUTPUT); // Turn the LED on HIGH digitalWrite(LED_BUILTIN, HIGH); }
——
Arduino Uno
RX – Digital 3
TX – Digital 2
VIN – +3.3V
GND – GND
——
DL2307Mk04pr.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - Bluetooth Pololu AltIMU-10 - Mk23 26-23 DL2307Mk04pr.ino 1 x Arduino Uno 1 x SparkFun RedBoard Qwiic 1 x SparkFun Bluetooth Mate Silver 1 x SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude 1 x SparkFun Air Quality Breakout - CCS811 1 x Pololu AltIMU-10 v5 1 x Lithium Ion Battery - 85mAh 2 x SparkFun Cerberus USB Cable */ // Include the Library Code // Software Serial #include <SoftwareSerial.h> // Software Serial // TX-O pin of bluetooth mate, Arduino D2 int bluetoothTx = 2; // RX-I pin of bluetooth mate, Arduino D3 int bluetoothRx = 3; // Bluetooth SoftwareSerial bluetooth(bluetoothTx, bluetoothRx); // BTA //String BTA = "0006664FDC9E"; // Software Version Information String sver = "26-23"; void loop() { // isBluetooth isBluetooth(); }
getBluetooth.ino
// Bluetooth // Setup Bluetooth void isSetupBluetooth(){ // Setup Bluetooth // Begin the serial monitor at 9600bps Serial.begin(9600); // Bluetooth // The Bluetooth Mate defaults to 115200bps bluetooth.begin(115200); // Print three times individually bluetooth.print("$"); bluetooth.print("$"); bluetooth.print("$"); // Enter command mode // Short delay, wait for the Mate to send back CMD delay(100); // Temporarily Change the baudrate to 9600, no parity bluetooth.println("U,9600,N"); // 115200 can be too fast at times for NewSoftSerial to relay the data reliably // Start bluetooth serial at 9600 bluetooth.begin(9600); } // isBluetooth void isBluetooth() { // If the bluetooth sent any characters if(bluetooth.available()) { // Send any characters the bluetooth prints to the serial monitor Serial.print((char)bluetooth.read()); } // If stuff was typed in the serial monitor if(Serial.available()) { // Send any characters the Serial monitor prints to the bluetooth bluetooth.print((char)Serial.read()); } }
setup.ino
// Setup void setup() { // Setup Bluetooth isSetupBluetooth(); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- Programming Language
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #26 – Radio Frequency – Bluetooth Moteino – Mk18
——
#DonLucElectronics #DonLuc #RadioFrequency #Bluetooth #Accelerometer #Magnetometer #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
Moteino
Moteino began as a low power wireless Arduino compatible development platform based on the popular ATmega328p chip used in the Arduino UNO. Moteinos are compatible and can communicate with any other Arduino or development platform that uses the popular HopeRF RFM69 or LoRa transceivers, or even the older RFM12B. Moteino also comes with an optional SPI flash memory chip for wireless programming, or data logging. Moteino was designed to be a compact, highly customizable and affordable development platform, suitable for IoT, home automation and long range wireless projects.
Moteino in RFM12B to rebuild suggests doing as new without completely replacing. I decided to stripped down at RFM12B and rebuild in Bluetooth.
DL2306Mk05
1 x Moteino
1 x SparkFun Bluetooth Mate Silver
1 x SparkFun 9 Degrees of Freedom Breakout – MPU-9150
1 x LED Red
1 x SparkFun FTDI Basic Breakout – 5V
1 x SparkFun Cerberus USB Cable
Moteino
LED – Digital 8
RX – Digital 3
TX – Digital 2
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND
——
DL2306Mk05p.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - Bluetooth Moteino - Mk18 26-18 DL2306Mk05p.ino 1 x Moteino 1 x SparkFun Bluetooth Mate Silver 1 x SparkFun 9 Degrees of Freedom Breakout - MPU-9150 1 x LED Red 1 x SparkFun FTDI Basic Breakout - 5V 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // Software Serial #include <SoftwareSerial.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // I2CDev I2C utilities #include "I2Cdev.h" // MPU9150Lib 9-axis fusion #include "MPU9150Lib.h" // CalLib magnetometer and accelerometer calibration #include "CalLib.h" // Motion Driver InvenSense Embedded SDK v5.1 #include <dmpKey.h> #include <dmpmap.h> #include <inv_mpu.h> #include <inv_mpu_dmp_motion_driver.h> // EEPROM Magnetometer and Accelerometer data is stored #include <EEPROM.h> // the MPU object MPU9150Lib MPU; // MPU_UPDATE_RATE defines the rate (in Hz) // at which the MPU updates the sensor data and DMP output #define MPU_UPDATE_RATE (20) // MAG_UPDATE_RATE defines the rate (in Hz) at which the // MPU updates the magnetometer data // MAG_UPDATE_RATE should be less than or equal to the MPU_UPDATE_RATE #define MAG_UPDATE_RATE (10) // MPU_MAG_MIX defines the influence that the magnetometer has on the yaw output. // The magnetometer itself is quite noisy so some mixing with the gyro yaw can help // significantly. Some example values are defined below: // Just use gyro yaw #define MPU_MAG_MIX_GYRO_ONLY 0 // Just use magnetometer and no gyro yaw #define MPU_MAG_MIX_MAG_ONLY 1 // A good mix value #define MPU_MAG_MIX_GYRO_AND_MAG 10 // mainly gyros with a bit of mag correction #define MPU_MAG_MIX_GYRO_AND_SOME_MAG 50 // MPU_LPF_RATE is the low pas filter rate and can be between 5 and 188Hz #define MPU_LPF_RATE 5 // This is our earth frame gravity vector - quaternions and vectors MPUQuaternion gravity; // Quaternion Result float Quaternion_X = 0.0; float Quaternion_Y = 0.0; float Quaternion_Z = 0.0; // SERIAL_PORT_SPEED defines the speed to use for the debug serial port #define SERIAL_PORT_SPEED 115200 // Software Serial // TX-O pin of bluetooth mate, Arduino D2 int bluetoothTx = 2; // RX-I pin of bluetooth mate, Arduino D3 int bluetoothRx = 3; // Bluetooth SoftwareSerial bluetooth(bluetoothTx, bluetoothRx); // BTA String BTA = "0006664FAE18"; // LED Red int iLedRed = 8; // Variable to calculate frequency unsigned long curr = 0; unsigned long last = 0; unsigned long freq; // Software Version Information String sver = "26-18"; void loop() { // MPU isMPU(); }
getMPU.ino
// MPU // Setup MPU void isSetupMPU() { // MPU MPU.init(MPU_UPDATE_RATE, MPU_MAG_MIX_GYRO_AND_MAG, MAG_UPDATE_RATE, MPU_LPF_RATE); // start the MPU // Set up the initial gravity vector for quaternion rotation // Max value down the z axis gravity[QUAT_W] = 0; gravity[QUAT_X] = 0; gravity[QUAT_Y] = 0; gravity[QUAT_Z] = SENSOR_RANGE; } // MPU void isMPU() { // Quaternion // This is our body frame gravity vector MPUQuaternion rotatedGravity; // This is the conjugate of the fused quaternion MPUQuaternion fusedConjugate; // Used in the rotation MPUQuaternion qTemp; // The accelerations MPUVector3 result; // Get the latest data if (MPU.read()) { // Need this for the rotation MPUQuaternionConjugate(MPU.m_fusedQuaternion, fusedConjugate); // Rotate the gravity vector into the body frame MPUQuaternionMultiply(gravity, MPU.m_fusedQuaternion, qTemp); MPUQuaternionMultiply(fusedConjugate, qTemp, rotatedGravity); // Now subtract rotated gravity from the body accels to get real accelerations. // Note that signs are reversed to get +ve acceleration results // in the conventional axes. // Quaternion Result Quaternion_X = -(MPU.m_calAccel[VEC3_X] - rotatedGravity[QUAT_X]); Quaternion_Y = -(MPU.m_calAccel[VEC3_Y] - rotatedGravity[QUAT_Y]); Quaternion_Z = -(MPU.m_calAccel[VEC3_Z] - rotatedGravity[QUAT_Z]); // Variable to calculate frequency curr = micros(); freq = curr - last; last = curr; // Bluetooth Serial.print( "Blue|" + BTA + "|" ); Serial.print( Quaternion_X ); Serial.print( "|" ); Serial.print( Quaternion_Y ); Serial.print( "|" ); Serial.print( Quaternion_Z ); Serial.print( "|" ); Serial.print( freq ); Serial.println( "|*" ); // Send any characters the Serial monitor prints to the bluetooth bluetooth.print((char)Serial.read()); } }
setup.ino
// Setup void setup() { // Serial Serial.begin(SERIAL_PORT_SPEED); // Bluetooth // The Bluetooth Mate defaults to 115200bps bluetooth.begin(115200); // LED Red pinMode(iLedRed, OUTPUT); digitalWrite(iLedRed, HIGH); // Give display time to power on delay(100); // Wire communicate with I2C / TWI devices Wire.begin(); // Pause delay(50); // Setup MPU isSetupMPU(); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- Programming Language
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #26 – Radio Frequency – Bluetooth MPU-9150 – Mk17
——
#DonLucElectronics #DonLuc #RadioFrequency #Bluetooth #Accelerometer #Magnetometer #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
MPU-9150
MotionInterface is becoming a “Must-Have” function being adopted by smartphone and tablet manufacturers due to the enormous value it adds to the end user experience. In smartphones, it finds use in applications such as gesture commands for applications and phone control, enhanced gaming, augmented reality, panoramic photo capture and viewing, and pedestrian and vehicle navigation. With its ability to precisely and accurately track user motions, MotionTracking technology can convert handsets and tablets into powerful 3D intelligent devices that can be used in applications ranging from health and fitness monitoring to location-based services. Key requirements for MotionInterface enabled devices are small package size, low power consumption, high accuracy and repeatability, high shock tolerance, and application specific performance programmability, all at a low consumer price point.
DL2306Mk04
1 x Arduino Uno
1 x SparkFun Bluetooth Mate Silver
1 x SparkFun 9 Degrees of Freedom Breakout – MPU-9150
1 x SparkFun Cerberus USB Cable
Arduino Uno
RX – Digital 3
TX – Digital 2
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND
——
DL2306Mk04p.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - Bluetooth MPU-9150 - Mk17 26-17 DL2306Mk07p.ino 1 x Arduino Uno 1 x SparkFun Bluetooth Mate Silver 1 x SparkFun 9 Degrees of Freedom Breakout - MPU-9150 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // Software Serial #include <SoftwareSerial.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // I2CDev I2C utilities #include "I2Cdev.h" // MPU9150Lib 9-axis fusion #include "MPU9150Lib.h" // CalLib magnetometer and accelerometer calibration #include "CalLib.h" // Motion Driver InvenSense Embedded SDK v5.1 #include <dmpKey.h> #include <dmpmap.h> #include <inv_mpu.h> #include <inv_mpu_dmp_motion_driver.h> // EEPROM Magnetometer and Accelerometer data is stored #include <EEPROM.h> // the MPU object MPU9150Lib MPU; // MPU_UPDATE_RATE defines the rate (in Hz) // at which the MPU updates the sensor data and DMP output #define MPU_UPDATE_RATE (20) // MAG_UPDATE_RATE defines the rate (in Hz) at which the // MPU updates the magnetometer data // MAG_UPDATE_RATE should be less than or equal to the MPU_UPDATE_RATE #define MAG_UPDATE_RATE (10) // MPU_MAG_MIX defines the influence that the magnetometer has on the yaw output. // The magnetometer itself is quite noisy so some mixing with the gyro yaw can help // significantly. Some example values are defined below: // Just use gyro yaw #define MPU_MAG_MIX_GYRO_ONLY 0 // Just use magnetometer and no gyro yaw #define MPU_MAG_MIX_MAG_ONLY 1 // A good mix value #define MPU_MAG_MIX_GYRO_AND_MAG 10 // mainly gyros with a bit of mag correction #define MPU_MAG_MIX_GYRO_AND_SOME_MAG 50 // MPU_LPF_RATE is the low pas filter rate and can be between 5 and 188Hz #define MPU_LPF_RATE 5 // This is our earth frame gravity vector - quaternions and vectors MPUQuaternion gravity; // Quaternion Result float Quaternion_X = 0.0; float Quaternion_Y = 0.0; float Quaternion_Z = 0.0; // SERIAL_PORT_SPEED defines the speed to use for the debug serial port #define SERIAL_PORT_SPEED 115200 // Software Serial // TX-O pin of bluetooth mate, Arduino D2 int bluetoothTx = 2; // RX-I pin of bluetooth mate, Arduino D3 int bluetoothRx = 3; // Bluetooth SoftwareSerial bluetooth(bluetoothTx, bluetoothRx); // BTA String BTA = "0006664FDC9E"; // Variable to calculate frequency unsigned long curr = 0; unsigned long last = 0; unsigned long freq; // Software Version Information String sver = "26-17"; void loop() { // MPU isMPU(); }
getMPU.ino
// MPU // Setup MPU void isSetupMPU() { // MPU MPU.init(MPU_UPDATE_RATE, MPU_MAG_MIX_GYRO_AND_MAG, MAG_UPDATE_RATE, MPU_LPF_RATE); // start the MPU // Set up the initial gravity vector for quaternion rotation // Max value down the z axis gravity[QUAT_W] = 0; gravity[QUAT_X] = 0; gravity[QUAT_Y] = 0; gravity[QUAT_Z] = SENSOR_RANGE; } // MPU void isMPU() { // Quaternion // This is our body frame gravity vector MPUQuaternion rotatedGravity; // This is the conjugate of the fused quaternion MPUQuaternion fusedConjugate; // Used in the rotation MPUQuaternion qTemp; // The accelerations MPUVector3 result; // Get the latest data if (MPU.read()) { // Need this for the rotation MPUQuaternionConjugate(MPU.m_fusedQuaternion, fusedConjugate); // Rotate the gravity vector into the body frame MPUQuaternionMultiply(gravity, MPU.m_fusedQuaternion, qTemp); MPUQuaternionMultiply(fusedConjugate, qTemp, rotatedGravity); // Now subtract rotated gravity from the body accels to get real accelerations. // Note that signs are reversed to get +ve acceleration results // in the conventional axes. // Quaternion Result Quaternion_X = -(MPU.m_calAccel[VEC3_X] - rotatedGravity[QUAT_X]); Quaternion_Y = -(MPU.m_calAccel[VEC3_Y] - rotatedGravity[QUAT_Y]); Quaternion_Z = -(MPU.m_calAccel[VEC3_Z] - rotatedGravity[QUAT_Z]); // Variable to calculate frequency curr = micros(); freq = curr - last; last = curr; // Bluetooth Serial.print( "Blue|" + BTA + "|" ); Serial.print( Quaternion_X ); Serial.print( "|" ); Serial.print( Quaternion_Y ); Serial.print( "|" ); Serial.print( Quaternion_Z ); Serial.print( "|" ); Serial.print( freq ); Serial.println( "|*" ); // Send any characters the Serial monitor prints to the bluetooth bluetooth.print((char)Serial.read()); } }
setup.ino
// Setup void setup() { // Serial Serial.begin(SERIAL_PORT_SPEED); // Bluetooth // The Bluetooth Mate defaults to 115200bps bluetooth.begin(115200); // Give display time to power on delay(100); // Wire communicate with I2C / TWI devices Wire.begin(); // Pause delay(50); // Setup MPU isSetupMPU(); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- Programming Language
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #12: Robotics – 9DOF – Mk27
——
#DonLucElectronics #DonLuc #Robotics #Magnetometer #Accelerometer #Gyroscope #MicroOLED # #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
SparkFun 9 Degrees of Freedom – Sensor Stick
The SparkFun 9DOF Sensor Stick is a very small sensor board with 9 degrees of freedom. It includes the ADXL345 accelerometer, the HMC5883L magnetometer, and the ITG-3200 MEMS gyro. The “Stick” has a simple I2C interface and a mounting hole for attaching it to your project. Also, the board is a mere allowing it to be easily mounted in just about any application.
DL2305Mk03
1 x SparkFun RedBoard Qwiic
1 x ProtoScrewShield
1 x SparkFun 9 Degrees of Freedom – Sensor Stick
1 x SparkFun Micro OLED Breakout (Qwiic)
1 x Thumb Joystick
1 x SparkFun Thumb Joystick Breakout
2 x Pololu DRV8834 Low-Voltage Stepper Motor Driver Carrier
2 x Electrolytic Decoupling Capacitors – 100uF/25V
2 x Pololu Stepper Motor Bipolar, 2.8V, 1.7 A/Phase
2 x Pololu Universal Aluminum Mounting Hub for 5mm Shaft, M3 Holes
1 x SparkFun Solderable Breadboard – Large
1 x SparkFun Cerberus USB Cable
SparkFun RedBoard Qwiic
SDA – Analog A5
SCL – Analog A4
JH – Analog A0
JV – Analog A1
JS – Digital 2
DIR – Digital 7
SPR – Digital 8
DIL – Digital 9
SPL – Digital 10
LED – Digital 13
VIN – +3.3V
VIN – +5V
GND – GND
——
DL2305Mk03p.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #12: Robotics - 9DOF - Mk27 12-27 DL2305Mk03p.ino 1 x SparkFun RedBoard Qwiic 1 x ProtoScrewShield 1 x SparkFun 9 Degrees of Freedom - Sensor Stick 1 x SparkFun Micro OLED Breakout (Qwiic) 1 x Thumb Joystick 1 x SparkFun Thumb Joystick Breakout 2 x Pololu DRV8834 Low-Voltage Stepper Motor Driver Carrier 2 x Electrolytic Decoupling Capacitors - 100uF/25V 2 x Pololu Stepper Motor Bipolar, 2.8V, 1.7 A/Phase 2 x Pololu Universal Aluminum Mounting Hub for 5mm Shaft, M3 Holes 1 x SparkFun Solderable Breadboard - Large 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // Arduino #include <Arduino.h> // DRV8834 Stepper Motor Driver #include <BasicStepperDriver.h> #include <MultiDriver.h> // Wire communicate with I2C / TWI devices #include <Wire.h> // SparkFun Micro OLED #include <SFE_MicroOLED.h> // Accelerometer #include <ADXL345.h> // Magnetometer #include <HMC58X3.h> // MEMS Gyroscope #include <ITG3200.h> // Debug #include "DebugUtils.h" // FreeIMU #include <CommunicationUtils.h> #include <FreeIMU.h> // DRV8834 Stepper Motor Driver // Stepper motor steps per revolution. // Most steppers are 200 steps or 1.8 degrees/step #define MOTOR_STEPS 200 // Target RPM for X axis stepper motor #define MOTOR_X_RPM 800 // Target RPM for Y axis stepper motor #define MOTOR_Y_RPM 800 // Since microstepping is set externally, // make sure this matches the selected mode // If it doesn't, the motor will move at a // different RPM than chosen // 1=full step, 2=half step etc. #define MICROSTEPS 1 // X Stepper motor #define DIR_X 7 #define STEP_X 8 // Y Stepper motor #define DIR_Y 9 #define STEP_Y 10 // BasicStepperDriver BasicStepperDriver stepperX(MOTOR_STEPS, DIR_X, STEP_X); BasicStepperDriver stepperY(MOTOR_STEPS, DIR_Y, STEP_Y); // Pick one of the two controllers below // each motor moves independently MultiDriver controller(stepperX, stepperY); // Joystick #define JH A0 #define JV A1 #define JS 2 // Variable for reading the button int JSState = 0; // Adjusted Value int adjustedValue = 0; int adjustedValue2 = 0; // LED Yellow int iLED = 13; // SparkFun Micro OLED #define PIN_RESET 9 #define DC_JUMPER 1 // I2C declaration MicroOLED oled(PIN_RESET, DC_JUMPER); // Set the FreeIMU object FreeIMU my3IMU = FreeIMU(); // Yaw Pitch Roll float ypr[3]; float Yaw = 0; float Pitch = 0; float Roll = 0; // Software Version Information String sver = "12-27"; void loop() { // Button isButton(); // Joystick isThumbJoystick(); // Stepper isStepper(); // isFreeIMU isFreeIMU(); // Micro OLED isMicroOLED(); }
getButton.ino
// Button // Button Setup void isButtonSetup() { // Make the button line an input pinMode(JS, INPUT_PULLUP); // Initialize digital pin iLED as an output pinMode(iLED, OUTPUT); } // Button void isButton(){ // Read the state of the button JSState = digitalRead(JS); // Check if the button is pressed. // If it is, the JSState is HIGH: if (JSState == HIGH) { // Button // Turn the LED on HIGH digitalWrite(iLED, HIGH); } else { // Button // Turn the LED on LOW digitalWrite(iLED, LOW); } }
getFreeIMU.ino
// FreeIMU // isFreeIMUSetup void isFreeIMUSetup(){ // Pause delay(5); // Initialize IMU my3IMU.init(); // Pause delay(5); } // isFreeIMU void isFreeIMU(){ // FreeIMU // Yaw Pitch Roll my3IMU.getYawPitchRoll(ypr); // Yaw Yaw = ypr[0]; // Pitch Pitch = ypr[1]; // Roll Roll = ypr[2]; }
getMicroOLED.ino
// SparkFun Micro OLED // Micro OLED Setup void isMicroOLEDSetup() { // Initialize the OLED oled.begin(); // Clear the display's internal memory oled.clear(ALL); // Display what's in the buffer (Splash Screen SparkFun) oled.display(); // Delay 1000 ms delay(1000); // Clear the buffer. oled.clear(PAGE); } // Micro OLED void isMicroOLED() { // Text Display FreeIMU // Clear the display oled.clear(PAGE); // Set cursor to top-left oled.setCursor(0, 0); // Set font to type 0 oled.setFontType(0); // Horizontal oled.print("H: "); oled.print( adjustedValue ); // Vertical oled.setCursor(0, 11); oled.print("V: "); oled.print( adjustedValue2 ); // Yaw oled.setCursor(0, 21); oled.print("Y: "); oled.print(Yaw); // Pitch oled.setCursor(0, 31); oled.print("P: "); oled.print(Pitch); // Roll oled.setCursor(0, 41); oled.print("R: "); oled.print(Roll); oled.display(); }
getStepper.ino
// Stepper // isStepperSetup void isStepperSetup() { // Set stepper target motors RPM. stepperX.begin(MOTOR_X_RPM, MICROSTEPS); stepperY.begin(MOTOR_Y_RPM, MICROSTEPS); } // Stepper void isStepper() { // Stepper => Controller rotate controller.rotate(adjustedValue, adjustedValue2); }
getThumbJoystick.ino
// Thumb Joystick void isThumbJoystick() { // Joystick JH // Horizontal // Joystick Pot Values JH int potValue = analogRead(JH); int potValues = 0; // Adjusted Value potValues = map(potValue, 0, 1023, 1000, -1000); if (potValues > 300) { adjustedValue = potValues; } else if (potValues < -300) { adjustedValue = potValues; } else { adjustedValue = 0; } // Joystick JV // Vertical // Joystick Pot Values JV int potValue2 = analogRead(JV); int potValues2 = 0; // Adjusted Value2 potValues2 = map(potValue2, 0, 1023, 1000, -1000); if (potValues2 > 300) { adjustedValue2 = potValues2; } else if (potValues2 < -300) { adjustedValue2 = potValues2; } else { adjustedValue2 = 0; } }
setup.ino
// Setup void setup() { // Wire communicate with I2C / TWI devices Wire.begin(); // Setup Micro OLED isMicroOLEDSetup(); // isFreeIMUSetup isFreeIMUSetup(); // Button Setup isButtonSetup(); // DRV8834 Stepper Motor Driver isStepperSetup(); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- Programming Language
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #26 – Radio Frequency – GPS Receiver – Mk07
——
#DonLucElectronics #DonLuc #RadioFrequency #Moteino #Send #Receive #GPSReceiver #OpenLog #Display #FreeIMU #Magnetometer #Accelerometer #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
GPS Receiver – GP-20U7 (56 Channel)
The GP-20U7 is a compact GPS receiver with a built-in high performances all-in-one GPS chipset. The GP-20U7 accurately provides position, velocity, and time readings as well possessing high sensitivity and tracking capabilities. Thanks to the low power consumption this receiver requires, the GP-20U7 is ideal for portable applications such as tablet PCs, smart phones, and other devices requiring positioning capability.
This 56-channel GPS module, that supports a standard NMEA-0183 and uBlox 7 protocol, has low power consumption of 40mA@3.3V (Max), an antenna on board, and -162dBm tracking sensitivity. With 56 channels in search mode and 22 channels “All-In-View” tracking, the GP-20U7 is quite the work horse for its size.
DL2212Mk02
2 x Moteino R2 (RFM12B)
1 x GPS Receiver – GP-20U7 (56 Channel)
1 x SparkFun OpenLog
1 x microSD Card – 16GB
1 x SparkFun Micro OLED Breakout (Qwiic)
1 x SparkFun 9 Degrees of Freedom – Sensor Stick
2 x Lithium Ion Battery – 1 Ah
1 x SparkFun Cerberus USB Cable
Moteino R2 (Receive)
TX0 – Digital 1
TR0 – Digital 2
LED – Digital 9
TR1 – Digital 10
TR2 – Digital 11
TR3 – Digital 12
TR4 – Digital 13
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND
——
DL2212Mk02pr.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - GPS Receiver - Mk07 26-07 Receive DL2212Mk02pr.ino 2 x Moteino R2 (RFM12B) 1 x GPS Receiver - GP-20U7 (56 Channel) 1 x SparkFun OpenLog 1 x microSD Card - 16GB 1 x SparkFun Micro OLED Breakout (Qwiic) 1 x SparkFun 9 Degrees of Freedom - Sensor Stick 2 x Lithium Ion Battery - 1Ah 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // RFM12B Radio #include <RFM12B.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // SparkFun Micro OLED #include <SFE_MicroOLED.h> // You will need to initialize the radio by telling it what ID // it has and what network it's on // The NodeID takes values from 1-127, 0 is reserved for sending // broadcast messages (send to all nodes) // The Network ID takes values from 0-255 // By default the SPI-SS line used is D10 on Atmega328. // You can change it by calling .SetCS(pin) where pin can be {8,9,10} // Network ID used for this unit #define NODEID 1 // The network ID we are on #define NETWORKID 99 // Serial #define SERIAL_BAUD 115200 // Encryption is OPTIONAL // to enable encryption you will need to: // - provide a 16-byte encryption KEY (same on all nodes that talk encrypted) // - to call .Encrypt(KEY) to start encrypting // - to stop encrypting call .Encrypt(NULL) uint8_t KEY[] = "ABCDABCDABCDABCD"; // Need an instance of the RFM12B Radio Module RFM12B radio; // Process Message // Message String msg = ""; int firstClosingBracket = 0; // Yaw Pitch Roll String sYaw = ""; String sPitch = ""; String sRoll = ""; float Yaw = 0; float Pitch = 0; float Roll = 0; // LED int iLED = 9; // SparkFun Micro OLED #define PIN_RESET 9 #define DC_JUMPER 1 // I2C declaration MicroOLED oled(PIN_RESET, DC_JUMPER); // Software Version Information String sver = "26-07"; void loop() { // is RFM12B Radio isRFM12BRadio(); // Micro OLED isMicroOLED(); }
getFreeIMU.ino
// FreeIMU // isFreeIMU void isFreeIMU(){ // FreeIMU // msg = "<IMU|Yaw|Pitch|Roll|GPS Status|Latitude|Longitude|Date|Time|*" // msg = "<IMU|" + sYaw + "|" + sPitch + "|" + sRoll + "|" + GPSSt // + "|" + TargetLat + "|" TargetLon + "|" + TargetDat +"|" + TargetTim + "|*" firstClosingBracket = 0; // "<IMU|" firstClosingBracket = msg.indexOf('|'); msg.remove(0, 5); // Yaw firstClosingBracket = msg.indexOf('|'); sYaw = msg; sYaw.remove(firstClosingBracket); Yaw = sYaw.toFloat(); // Pitch firstClosingBracket = firstClosingBracket + 1; msg.remove(0, firstClosingBracket ); firstClosingBracket = msg.indexOf('|'); sPitch = msg; sPitch.remove(firstClosingBracket); Pitch = sPitch.toFloat(); // Roll firstClosingBracket = firstClosingBracket + 1; msg.remove(0, firstClosingBracket ); firstClosingBracket = msg.indexOf('|'); sRoll = msg; sRoll.remove(firstClosingBracket); Roll = sRoll.toFloat(); }
getMicroOLED.ino
// SparkFun Micro OLED // Setup Micro OLED void isSetupMicroOLED() { // Initialize the OLED oled.begin(); // Clear the display's internal memory oled.clear(ALL); // Display what's in the buffer (splashscreen) oled.display(); // Delay 1000 ms delay(1000); // Clear the buffer. oled.clear(PAGE); } // Micro OLED void isMicroOLED() { // Text Display FreeIMU // Clear the display oled.clear(PAGE); // Set cursor to top-left oled.setCursor(0, 0); // Set font to type 0 oled.setFontType(0); // FreeIMU oled.print("FreeIMU"); oled.setCursor(0, 12); // Yaw oled.print("Y: "); oled.print(Yaw); oled.setCursor(0, 25); // Pitch oled.print("P: "); oled.print(Pitch); oled.setCursor(0, 39); // Roll oled.print("R: "); oled.print(Roll); oled.display(); }
getRFM12BRadio.ino
// RFM12B Radio void isSetupRFM12BRadio() { // RFM12B Radio radio.Initialize(NODEID, RF12_433MHZ, NETWORKID); // Encryption radio.Encrypt(KEY); // Transmitting } // is RFM12 BRadio void isRFM12BRadio() { // Receive if (radio.ReceiveComplete()) { // CRC Pass if (radio.CRCPass()) { // Message msg = ""; // Can also use radio.GetDataLen() if you don't like pointers for (byte i = 0; i < *radio.DataLen; i++) { //Serial.print((char)radio.Data[i]); msg = msg + (char)radio.Data[i]; } // Serial Serial.println( msg ); // Turn the LED on HIGH digitalWrite( iLED , HIGH); // FreeIMU // Yaw Pitch Roll isFreeIMU(); // ACK Requested if (radio.ACKRequested()) { // Send ACK radio.SendACK(); } // Turn the LED on LOW digitalWrite( iLED , LOW); } else { // BAD-CRC } } }
setup.ino
// Setup void setup() { // Serial Serial.begin(SERIAL_BAUD); // Give display time to power on delay(100); // Set up I2C bus Wire.begin(); // Setup Micro OLED isSetupMicroOLED(); // LED pinMode( iLED , OUTPUT); // RFM12B Radio isSetupRFM12BRadio(); }
——
Moteino R2 (Send)
TR0 – Digital 2
GPT – Digital 3
GPR – Digital 4
LED – Digital 9
TR1 – Digital 10
TR2 – Digital 11
TR3 – Digital 12
TR4 – Digital 13
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND
——
DL2212Mk02ps.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - GPS Receiver - Mk07 26-07 Send DL2212Mk02ps.ino 2 x Moteino R2 (RFM12B) 1 x GPS Receiver - GP-20U7 (56 Channel) 1 x SparkFun OpenLog 1 x microSD Card - 16GB 1 x SparkFun Micro OLED Breakout (Qwiic) 1 x SparkFun 9 Degrees of Freedom - Sensor Stick 2 x Lithium Ion Battery - 1Ah 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // RFM12B Radio #include <RFM12B.h> // Sleep #include <avr/sleep.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Includes and variables for IMU integration // Accelerometer #include <ADXL345.h> // Magnetometer #include <HMC58X3.h> // MEMS Gyroscope #include <ITG3200.h> // Debug #include "DebugUtils.h" // FreeIMU #include <CommunicationUtils.h> #include <FreeIMU.h> // GPS Receiver #include <TinyGPS++.h> // Software Serial #include <SoftwareSerial.h> // You will need to initialize the radio by telling it what ID // it has and what network it's on // The NodeID takes values from 1-127, 0 is reserved for sending // broadcast messages (send to all nodes) // The Network ID takes values from 0-255 // By default the SPI-SS line used is D10 on Atmega328. // You can change it by calling .SetCS(pin) where pin can be {8,9,10} // Network ID used for this unit #define NODEID 2 // The network ID we are on #define NETWORKID 99 // The node ID we're sending to #define GATEWAYID 1 // # of ms to wait for an ack #define ACK_TIME 50 // Serial #define SERIAL_BAUD 115200 // Encryption is OPTIONAL // to enable encryption you will need to: // - provide a 16-byte encryption KEY (same on all nodes that talk encrypted) // - to call .Encrypt(KEY) to start encrypting // - to stop encrypting call .Encrypt(NULL) uint8_t KEY[] = "ABCDABCDABCDABCD"; // Wait this many ms between sending packets int interPacketDelay = 1000; // Input char input = 0; // Need an instance of the RFM12B Radio Module RFM12B radio; // Send Size byte sendSize = 0; // Payload char payload[100]; // Request ACK bool requestACK = false; // LED int iLED = 9; // Set the FreeIMU object FreeIMU my3IMU = FreeIMU(); // Yaw Pitch Roll String zzzzzz = ""; String sYaw = ""; String sPitch = ""; String sRoll = ""; float ypr[3]; float Yaw = 0; float Pitch = 0; float Roll = 0; // GPS Receiver #define gpsRXPIN 4 // This one is unused and doesnt have a conection #define gpsTXPIN 3 // The TinyGPS++ object TinyGPSPlus gps; // Latitude float TargetLat; String sLat = ""; // Longitude float TargetLon; String sLon = ""; // GPS Date, Time // GPS Date String TargetDat; // GPS Time String TargetTim; // GPS Status String GPSSt = ""; // The serial connection to the GPS device SoftwareSerial tGPS(gpsRXPIN, gpsTXPIN); // Software Version Information String sver = "26-07"; void loop() { // isGPS isGPS(); // isFreeIMU isFreeIMU(); // is RFM12B Radio isRFM12BRadio(); // Inter Packet Delay delay(interPacketDelay); }
getFreeIMU.ino
// FreeIMU // isFreeIMU void isFreeIMU(){ // FreeIMU // Yaw Pitch Roll my3IMU.getYawPitchRoll(ypr); // Yaw Yaw = ypr[0]; // Pitch Pitch = ypr[1]; // Roll Roll = ypr[2]; }
getGPS.ino
// GPS Receiver // Setup GPS void setupGPS() { // Setup GPS tGPS.begin( 9600 ); } // isGPS void isGPS(){ // Receives NEMA data from GPS receiver // This sketch displays information every time a new sentence is correctly encoded while ( tGPS.available() > 0) if (gps.encode( tGPS.read() )) { // GPS Vector Pointer Target displayInfo(); // GPS Date, Time displayDTS(); } if (millis() > 5000 && gps.charsProcessed() < 10) { while(true); } } // GPS Vector Pointer Target void displayInfo(){ // Location if (gps.location.isValid()) { // Latitude TargetLat = gps.location.lat(); // Longitude TargetLon = gps.location.lng(); // GPS Status 2 GPSSt = "Yes"; } else { // GPS Status 0 GPSSt = "No"; } } // GPS Date, Time void displayDTS(){ // Date TargetDat = ""; if (gps.date.isValid()) { // Date // Year TargetDat += String(gps.date.year(), DEC); TargetDat += "/"; // Month TargetDat += String(gps.date.month(), DEC); TargetDat += "/"; // Day TargetDat += String(gps.date.day(), DEC); } // Time TargetTim = ""; if (gps.time.isValid()) { // Time // Hour TargetTim += String(gps.time.hour(), DEC); TargetTim += ":"; // Minute TargetTim += String(gps.time.minute(), DEC); TargetTim += ":"; // Secound TargetTim += String(gps.time.second(), DEC); } }
getRFM12BRadio.ino
// RFM12B Radio void isSetupRFM12BRadio(){ // RFM12B Radio radio.Initialize(NODEID, RF12_433MHZ, NETWORKID); // Encryption radio.Encrypt(KEY); // Sleep right away to save power radio.Sleep(); // Transmitting Serial.println("Transmitting...\n\n"); } // is RFM12 BRadio void isRFM12BRadio(){ // sYaw, sPitch, sRoll "" sYaw = ""; sPitch = ""; sRoll = ""; // Latitude and Longitude sLat = ""; sLon = ""; // sYaw, sPitch, sRoll concat sYaw.concat(Yaw); sPitch.concat(Pitch); sRoll.concat(Roll); // Latitude and Longitude sLat.concat( TargetLat ); sLon.concat( TargetLon ); // zzzzzz "" zzzzzz = ""; // zzzzzz = "<IMU|Yaw|Pitch|Roll|GPS Status|Latitude|Longitude|Date|Time|*" // zzzzzz = "<IMU|" + sYaw + "|" + sPitch + "|" + sRoll + "|" + GPSSt // + "|" + TargetLat + "|" TargetLon + "|" + TargetDat +"|" + TargetTim + "|*" zzzzzz = "<IMU|" + sYaw + "|" + sPitch + "|" + sRoll + "|" + GPSSt + "|" + sLat + "|" + sLon + "|" + TargetDat + "|" + TargetTim + "|*"; // sendSize Length sendSize = zzzzzz.length(); // sendSize payload[sendSize]; // sendSize, charAt for(byte i = 0; i < sendSize+1; i++){ payload[i] = zzzzzz.charAt(i); } // payload Serial.print(payload); // Request ACK requestACK = sendSize; // Wakeup radio.Wakeup(); // Turn the LED on HIGH digitalWrite( iLED , HIGH); // Send radio.Send(GATEWAYID, payload, sendSize, requestACK); // Request ACK if (requestACK) { Serial.print(" - waiting for ACK..."); if (waitForAck()){ Serial.print("Ok!"); } else Serial.print("nothing..."); } // Turn the LED on LOW digitalWrite( iLED , LOW); // Sleep radio.Sleep(); // Serial Serial.println(); } // Wait a few milliseconds for proper ACK, return true if received static bool waitForAck(){ // Now long now = millis(); // ACK while (millis() - now <= ACK_TIME){ if (radio.ACKReceived(GATEWAYID)){ return true; } } return false; }
setup.ino
// Setup void setup(){ // Serial Serial.begin(SERIAL_BAUD); // GPS Receiver // Setup GPS setupGPS(); // LED pinMode( iLED , OUTPUT); // Set up I2C bus Wire.begin(); // RFM12B Radio isSetupRFM12BRadio(); // Pause delay(5); // Initialize IMU my3IMU.init(); // Pause delay(5); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- Programming Language
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #26 – Radio Frequency – OpenLog – Mk06
——
#DonLucElectronics #DonLuc #RadioFrequency #Moteino #Send #Receive #OpenLog #Display #FreeIMU #Magnetometer #Accelerometer #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
SparkFun OpenLog
The SparkFun OpenLog is an open source data logger that works over a simple serial connection and supports microSD cards up to 32GB. The OpenLog can store or “Log” huge amounts of serial data and act as a black box of sorts to store all the serial data that your project generates, for scientific or debugging purposes.
The SparkFun OpenLog uses an ATmega328 running at 16MHz thanks to the onboard resonator. The OpenLog draws approximately 2-3mA in idle mode. During a full record OpenLog can draw 10 to 20mA depending on the microSD card being used.
All data logged by the OpenLog is stored on the microSD card. Any 512MB to 32GB microSD card should work. OpenLog supports both FAT16 and FAT32 SD formats.
DL2212Mk01
2 x Moteino R2 (RFM12B)
1 x SparkFun OpenLog
1 x microSD Card – 16GB
1 x SparkFun Micro OLED Breakout (Qwiic)
1 x SparkFun 9 Degrees of Freedom – Sensor Stick
2 x Lithium Ion Battery – 1 Ah
1 x SparkFun Cerberus USB Cable
Moteino R2 (Receive)
TX0 – Digital 1
TR0 – Digital 2
LED – Digital 9
TR1 – Digital 10
TR2 – Digital 11
TR3 – Digital 12
TR4 – Digital 13
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND
——
DL2212Mk01pr.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - OpenLog - Mk06 26-06 Receive DL2212Mk01pr.ino 2 x Moteino R2 (RFM12B) 1 x SparkFun OpenLog 1 x microSD Card - 16GB 1 x SparkFun Micro OLED Breakout (Qwiic) 1 x SparkFun 9 Degrees of Freedom - Sensor Stick 2 x Lithium Ion Battery - 1Ah 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // RFM12B Radio #include <RFM12B.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // SparkFun Micro OLED #include <SFE_MicroOLED.h> // You will need to initialize the radio by telling it what ID // it has and what network it's on // The NodeID takes values from 1-127, 0 is reserved for sending // broadcast messages (send to all nodes) // The Network ID takes values from 0-255 // By default the SPI-SS line used is D10 on Atmega328. // You can change it by calling .SetCS(pin) where pin can be {8,9,10} // Network ID used for this unit #define NODEID 1 // The network ID we are on #define NETWORKID 99 // Serial #define SERIAL_BAUD 115200 // Encryption is OPTIONAL // to enable encryption you will need to: // - provide a 16-byte encryption KEY (same on all nodes that talk encrypted) // - to call .Encrypt(KEY) to start encrypting // - to stop encrypting call .Encrypt(NULL) uint8_t KEY[] = "ABCDABCDABCDABCD"; // Need an instance of the RFM12B Radio Module RFM12B radio; // Process Message // Message String msg = ""; int firstClosingBracket = 0; // Yaw Pitch Roll String sYaw = ""; String sPitch = ""; String sRoll = ""; float Yaw = 0; float Pitch = 0; float Roll = 0; // LED int iLED = 9; // SparkFun Micro OLED #define PIN_RESET 9 #define DC_JUMPER 1 // I2C declaration MicroOLED oled(PIN_RESET, DC_JUMPER); // Software Version Information String sver = "26-06"; void loop() { // is RFM12B Radio isRFM12BRadio(); // Micro OLED isMicroOLED(); }
getFreeIMU.ino
// FreeIMU // isFreeIMU void isFreeIMU(){ // FreeIMU // IMU Yaw Pitch Roll // msg = "<IMU|1000|1000|1000|*"; // msg = "<IMU|" + sYaw + "|" + sPitch + "|" + sRoll + "|*" firstClosingBracket = 0; // "<IMU|" firstClosingBracket = msg.indexOf('|'); msg.remove(0, 5); // Yaw firstClosingBracket = msg.indexOf('|'); sYaw = msg; sYaw.remove(firstClosingBracket); Yaw = sYaw.toFloat(); // Pitch firstClosingBracket = firstClosingBracket + 1; msg.remove(0, firstClosingBracket ); firstClosingBracket = msg.indexOf('|'); sPitch = msg; sPitch.remove(firstClosingBracket); Pitch = sPitch.toFloat(); // Roll firstClosingBracket = firstClosingBracket + 1; msg.remove(0, firstClosingBracket ); firstClosingBracket = msg.indexOf('|'); sRoll = msg; sRoll.remove(firstClosingBracket); Roll = sRoll.toFloat(); }
getMicroOLED.ino
// SparkFun Micro OLED // Setup Micro OLED void isSetupMicroOLED() { // Initialize the OLED oled.begin(); // Clear the display's internal memory oled.clear(ALL); // Display what's in the buffer (splashscreen) oled.display(); // Delay 1000 ms delay(1000); // Clear the buffer. oled.clear(PAGE); } // Micro OLED void isMicroOLED() { // Text Display FreeIMU // Clear the display oled.clear(PAGE); // Set cursor to top-left oled.setCursor(0, 0); // Set font to type 0 oled.setFontType(0); // FreeIMU oled.print("FreeIMU"); oled.setCursor(0, 12); // Yaw oled.print("Y: "); oled.print(Yaw); oled.setCursor(0, 25); // Pitch oled.print("P: "); oled.print(Pitch); oled.setCursor(0, 39); // Roll oled.print("R: "); oled.print(Roll); oled.display(); }
getRFM12BRadio.ino
// RFM12B Radio void isSetupRFM12BRadio() { // RFM12B Radio radio.Initialize(NODEID, RF12_433MHZ, NETWORKID); // Encryption radio.Encrypt(KEY); // Transmitting } // is RFM12 BRadio void isRFM12BRadio() { // Receive if (radio.ReceiveComplete()) { // CRC Pass if (radio.CRCPass()) { // Message msg = ""; // Can also use radio.GetDataLen() if you don't like pointers for (byte i = 0; i < *radio.DataLen; i++) { //Serial.print((char)radio.Data[i]); msg = msg + (char)radio.Data[i]; } // Serial Serial.println( msg ); // Turn the LED on HIGH digitalWrite( iLED , HIGH); // FreeIMU // Yaw Pitch Roll isFreeIMU(); // ACK Requested if (radio.ACKRequested()) { // Send ACK radio.SendACK(); } // Turn the LED on LOW digitalWrite( iLED , LOW); } else { // BAD-CRC } } }
setup.ino
// Setup void setup() { // Serial Serial.begin(SERIAL_BAUD); // Give display time to power on delay(100); // Set up I2C bus Wire.begin(); // Setup Micro OLED isSetupMicroOLED(); // LED pinMode( iLED , OUTPUT); // RFM12B Radio isSetupRFM12BRadio(); }
——
Moteino R2 (Send)
TR0 – Digital 2
LED – Digital 9
TR1 – Digital 10
TR2 – Digital 11
TR3 – Digital 12
TR4 – Digital 13
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND
——
DL2212Mk01ps.ino
/* ***** Don Luc Electronics © ***** Software Version Information Project #26 - Radio Frequency - OpenLog - Mk06 26-06 Send DL2212Mk01ps.ino 2 x Moteino R2 (RFM12B) 1 x SparkFun OpenLog 1 x microSD Card - 16GB 1 x SparkFun Micro OLED Breakout (Qwiic) 1 x SparkFun 9 Degrees of Freedom - Sensor Stick 2 x Lithium Ion Battery - 1Ah 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // RFM12B Radio #include <RFM12B.h> // Sleep #include <avr/sleep.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Includes and variables for IMU integration // Accelerometer #include <ADXL345.h> // Magnetometer #include <HMC58X3.h> // MEMS Gyroscope #include <ITG3200.h> // Debug #include "DebugUtils.h" // FreeIMU #include <CommunicationUtils.h> #include <FreeIMU.h> // You will need to initialize the radio by telling it what ID // it has and what network it's on // The NodeID takes values from 1-127, 0 is reserved for sending // broadcast messages (send to all nodes) // The Network ID takes values from 0-255 // By default the SPI-SS line used is D10 on Atmega328. // You can change it by calling .SetCS(pin) where pin can be {8,9,10} // Network ID used for this unit #define NODEID 2 // The network ID we are on #define NETWORKID 99 // The node ID we're sending to #define GATEWAYID 1 // # of ms to wait for an ack #define ACK_TIME 50 // Serial #define SERIAL_BAUD 115200 // Encryption is OPTIONAL // to enable encryption you will need to: // - provide a 16-byte encryption KEY (same on all nodes that talk encrypted) // - to call .Encrypt(KEY) to start encrypting // - to stop encrypting call .Encrypt(NULL) uint8_t KEY[] = "ABCDABCDABCDABCD"; // Wait this many ms between sending packets int interPacketDelay = 1000; // Input char input = 0; // Need an instance of the RFM12B Radio Module RFM12B radio; // Send Size byte sendSize = 0; // Payload char payload[100]; // Request ACK bool requestACK = false; // LED int iLED = 9; // Set the FreeIMU object FreeIMU my3IMU = FreeIMU(); // Yaw Pitch Roll String zzzzzz = ""; String sYaw = ""; String sPitch = ""; String sRoll = ""; float ypr[3]; float Yaw = 0; float Pitch = 0; float Roll = 0; // Software Version Information String sver = "26-06"; void loop() { // isFreeIMU isFreeIMU(); // is RFM12B Radio isRFM12BRadio(); // Inter Packet Delay delay(interPacketDelay); }
getFreeIMU.ino
// FreeIMU // isFreeIMU void isFreeIMU(){ // FreeIMU // Yaw Pitch Roll my3IMU.getYawPitchRoll(ypr); // Yaw Yaw = ypr[0]; // Pitch Pitch = ypr[1]; // Roll Roll = ypr[2]; }
getRFM12BRadio.ino
// RFM12B Radio void isSetupRFM12BRadio(){ // RFM12B Radio radio.Initialize(NODEID, RF12_433MHZ, NETWORKID); // Encryption radio.Encrypt(KEY); // Sleep right away to save power radio.Sleep(); // Transmitting Serial.println("Transmitting...\n\n"); } // is RFM12 BRadio void isRFM12BRadio(){ // sYaw, sPitch, sRoll "" sYaw = ""; sPitch = ""; sRoll = ""; // sYaw, sPitch, sRoll concat sYaw.concat(Yaw); sPitch.concat(Pitch); sRoll.concat(Roll); // zzzzzz "" zzzzzz = ""; // zzzzzz = "<IMU|1000|1000|1000|*"; // zzzzzz = "<IMU|" + sYaw + "|" + sPitch + "|" + sRoll + "|*" zzzzzz = "<IMU|" + sYaw + "|" + sPitch + "|" + sRoll + "|*"; // sendSize Length sendSize = zzzzzz.length(); // sendSize payload[sendSize]; // sendSize, charAt for(byte i = 0; i < sendSize+1; i++){ payload[i] = zzzzzz.charAt(i); } // payload Serial.print(payload); // Request ACK requestACK = sendSize; // Wakeup radio.Wakeup(); // Turn the LED on HIGH digitalWrite( iLED , HIGH); // Send radio.Send(GATEWAYID, payload, sendSize, requestACK); // Request ACK if (requestACK) { Serial.print(" - waiting for ACK..."); if (waitForAck()){ Serial.print("Ok!"); } else Serial.print("nothing..."); } // Turn the LED on LOW digitalWrite( iLED , LOW); // Sleep radio.Sleep(); // Serial Serial.println(); } // Wait a few milliseconds for proper ACK, return true if received static bool waitForAck(){ // Now long now = millis(); // ACK while (millis() - now <= ACK_TIME){ if (radio.ACKReceived(GATEWAYID)){ return true; } } return false; }
setup.ino
// Setup void setup(){ // Serial Serial.begin(SERIAL_BAUD); // LED pinMode( iLED , OUTPUT); // Set up I2C bus Wire.begin(); // RFM12B Radio isSetupRFM12BRadio(); // Pause delay(5); // Initialize IMU my3IMU.init(); // Pause delay(5); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- Programming Language
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc