Adafruit
Project #29 – DFRobot – BLE Sensor Beacon – Mk12
——
#DonLucElectronics #DonLuc #DFRobot #BLESensorBeacon #AmbientLight #SoilMoisture #SHT40 #FireBeetle2ESP32E #EEPROM #RTC #SD #Display #Adafruit #ESP32 #IoT #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
Fermion: BLE Sensor Beacon
Fermion: BLE Sensor Beacon, a wireless beacon that broadcasts sensor data via Bluetooth, with built-in 11-bit ADC acquisition and I2C write/read functionality, can be connected to digital or analogue sensors for data acquisition and broadcasting. Sensor data broadcasted by the beacon can be accessed within the beacon’s broadcast range using mobile phones, ESP32 and other devices that support BLE reception.
Fermion: BLE sensor beacons integrate low-power Bluetooth 5.3 technology with self-configurable data formats, such as iBeacon, Eddystone, user-defined, and more. The data format of the beacon broadcast, the content of the broadcast, the broadcast interval and so on can be configured through the graphical interface, without the need for any code programming to complete a Bluetooth beacon. After the configuration is completed, the device power supply is running as a Bluetooth beacon, which will automatically collect sensor data and broadcast to the outside world according to the configuration information. It is suitable for IoT sensor nodes, such as smart farms, offices, factories, warehouses and other scenarios in the data collection node.
DL2405Mk02
1 x DFRobot FireBeetle 2 ESP32-E
1 x Adafruit SHARP Memory Display
1 x Adafruit MicroSD card breakout board+
1 x MicroSD 16 GB
1 x Adafruit DS3231 Precision RTC FeatherWing – RTC
1 x Battery CR1220
1 x Gravity: Analog Soil Moisture Sensor
1 x Gravity: Analog Ambient Light Sensor
1 x Fermion: SHT40 Temperature & Humidity Sensor
3 x Fermion: BLE Sensor Beacon
3 x CR2032 Coin Cell Battery
1 x 1 x Lithium Ion Battery – 1000mAh
1 x Green LED
1 x Slide Switch
1 x SparkFun Serial Basic Breakout – CH340G
1 x SparkFun Cerberus USB Cable
1 x USB 3.1 Cable A to C
DFRobot FireBeetle 2 ESP32-E
LED – 2
DSCK – 12
DMOSI – 4
DSS – 16
SCK – 22
MOSI – 23
MISO – 19
CS – 13
SCL – 21
SDA – 22
LED – 14
VIN – +3.3V
GND – GND
——
DL2405Mk02p.ino
/****** Don Luc Electronics © ****** Software Version Information Project #29 - DFRobot - BLE Sensor Beacon - Mk12 29-12 DL2404Mk02p.ino 1 x DFRobot FireBeetle 2 ESP32-E 1 x Adafruit SHARP Memory Display 1 x Adafruit MicroSD card breakout board+ 1 x MicroSD 16 GB 1 x Adafruit DS3231 Precision RTC FeatherWing - RTC 1 x Battery CR1220 1 x Gravity: Analog Soil Moisture Sensor 1 x Gravity: Analog Ambient Light Sensor 1 x Fermion: SHT40 Temperature & Humidity Sensor 3 x Fermion: BLE Sensor Beacon 3 x CR2032 Coin Cell Battery 1 x 1 x Lithium Ion Battery - 1000mAh 1 x Green LED 1 x SparkFun Serial Basic Breakout - CH340G 1 x SparkFun Cerberus USB Cable 1 x USB 3.1 Cable A to C */ // Include the Library Code // EEPROM Library to Read and Write EEPROM // with Unique ID for Unit #include "EEPROM.h" // Wire #include <Wire.h> // Arduino #include <Arduino.h> // BLE Device #include <BLEDevice.h> // BLE Utils #include <BLEUtils.h> // BLEScan #include <BLEScan.h> // BLE Advertised Device #include <BLEAdvertisedDevice.h> // BLE Eddystone URL #include <BLEEddystoneURL.h> // BLE Eddystone TLM #include <BLEEddystoneTLM.h> // BLE Beacon #include <BLEBeacon.h> // DS3231 RTC Date and Time #include <RTClib.h> // SD Card #include "FS.h" #include "SD.h" #include "SPI.h" // SHARP Memory Display #include <Adafruit_SharpMem.h> #include <Adafruit_GFX.h> // ENDIAN_CHANGE #define ENDIAN_CHANGE_U16(x) ((((x)&0xFF00) >> 8) + (((x)&0xFF) << 8)) // DS3231 RTC Date and Time RTC_DS3231 rtc; String sDate; String sTime; // MicroSD Card const int chipSelect = 13; String zzzzzz = ""; // SHARP Memory Display #define SHARP_SCK 12 #define SHARP_MOSI 4 #define SHARP_SS 16 // Set the size of the display here, e.g. 144x168! Adafruit_SharpMem display(SHARP_SCK, SHARP_MOSI, SHARP_SS, 144, 168); // The currently-available SHARP Memory Display (144x168 pixels) // requires > 4K of microcontroller RAM; it WILL NOT WORK on Arduino Uno // or other <4K "classic" devices. #define BLACK 0 #define WHITE 1 // LED Green int iLEDGreen = 2; // Define LED int iLED = 14; // Fermion: SHT40 Temperature & Humidity Sensor // Temperature float TemperatureData; float Temperature; // Humidity float HumidityData; float Humidity; // Gravity: Analog Ambient Light Sensor float Sensor_Data; // SData => 1~6000 Lux float SData; // Gravity: Analog Soil Moisture Sensor float SensorSM; float SDataSM; // In seconds int scanTime = 5; // BLE Scan BLEScan *pBLEScan; // My Advertised Device Callbacks class MyAdvertisedDeviceCallbacks : public BLEAdvertisedDeviceCallbacks { // onResult void onResult(BLEAdvertisedDevice advertisedDevice) { // Advertised Device if (advertisedDevice.haveName()) { // Name: Fermion: Sensor Beacon if(String(advertisedDevice.getName().c_str()) == "SHT40"){ // strManufacturerData std::string strManufacturerData = advertisedDevice.getManufacturerData(); uint8_t cManufacturerData[100]; strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0); // strManufacturerData.length for (int i = 0; i < strManufacturerData.length(); i++) { // cManufacturerData[i] cManufacturerData[i]; } // TemperatureData TemperatureData = int(cManufacturerData[2]<<8 | cManufacturerData[3]); // HumidityData HumidityData = int(cManufacturerData[5]<<8 | cManufacturerData[6]); } // Name: Fermion: Sensor Beacon if(String(advertisedDevice.getName().c_str()) == "Fermion: Sensor Beacon"){ // strManufacturerData std::string strManufacturerData = advertisedDevice.getManufacturerData(); uint8_t cManufacturerData[100]; strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0); // strManufacturerData.length for (int i = 0; i < strManufacturerData.length(); i++) { // cManufacturerData[i] cManufacturerData[i]; } // Sensor_Data Sensor_Data = int(cManufacturerData[2]<<8 | cManufacturerData[3]); } // Name: Fermion: Sensor Beacon if(String(advertisedDevice.getName().c_str()) == "Soil Moisture"){ // strManufacturerData std::string strManufacturerData = advertisedDevice.getManufacturerData(); uint8_t cManufacturerData[100]; strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0); // strManufacturerData.length for (int i = 0; i < strManufacturerData.length(); i++) { // cManufacturerData[i] cManufacturerData[i]; } // SensorSM SensorSM = int(cManufacturerData[2]<<8 | cManufacturerData[3]); } } } }; // EEPROM Unique ID Information #define EEPROM_SIZE 64 String uid = ""; // Software Version Information String sver = "29-12"; void loop() { // DS3231 RTC Date and Time isRTC(); // ScanResults isBLEScanResults(); // Fermion: SHT40 Temperature & Humidity Sensor isSHT40(); // Gravity: Analog Ambient Light Sensor isAmbientLight(); // Soil Moisture isSoilMoisture(); // Delay 4 Second delay(4000); // Display Date, Time, Temperature, Humidity isDisplayDTTH(); // MicroSD Card isSD(); // iLED HIGH digitalWrite(iLED, HIGH ); // Delay 1 Second delay(1000); }
getAmbientLight.ino
// Gravity: Analog Ambient Light Sensor // Ambient Light void isAmbientLight(){ // Analog Ambient Light Sensor // SData => 1~6000 Lux SData = map(Sensor_Data, 1, 3000, 1, 6000); }
getBLEScan.ino
// getBLEScan // Setup BLE Scan void isSetupBLEScan(){ // BLE Device BLEDevice::init(""); // Create new scan pBLEScan = BLEDevice::getScan(); // Set Advertised Device Callbacks pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks()); // Active scan uses more power, but get results faster pBLEScan->setActiveScan(true); // Set Interval pBLEScan->setInterval(100); // Less or equal setInterval value pBLEScan->setWindow(99); } // BLE Scan Results void isBLEScanResults(){ // Put your main code here, to run repeatedly: BLEScanResults foundDevices = pBLEScan->start(scanTime, false); // Delete results fromBLEScan buffer to release memory pBLEScan->clearResults(); }
getDisplay.ino
// SHARP Memory Display // SHARP Memory Display - UID void isDisplayUID() { // Text Display // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(3); display.setTextColor(BLACK); // Don Luc Electronics display.setCursor(0,10); display.println( "Don Luc" ); display.setTextSize(2); display.setCursor(0,40); display.println( "Electronics" ); // Version //display.setTextSize(3); display.setCursor(0,70); display.println( "Version" ); //display.setTextSize(2); display.setCursor(0,95); display.println( sver ); // EEPROM display.setCursor(0,120); display.println( "EEPROM" ); display.setCursor(0,140); display.println( uid ); // Refresh display.refresh(); delay( 100 ); } // Display Date, Time, Temperature, Humidity, Ambient Light, Soil Moisture void isDisplayDTTH() { // Text Display Date // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(2); display.setTextColor(BLACK); // Date display.setCursor(0,5); display.println( sDate ); // Time display.setCursor(0,30); display.println( sTime ); // Temperature display.setCursor(0,55); display.print( Temperature ); display.println( "C" ); // Humidity display.setCursor(0,80); display.print( Humidity ); display.println( "%" ); // Lux display.setCursor(0,105); display.println( SData ); // Soil Moisture display.setCursor(0,130); display.println( SDataSM ); // Refresh display.refresh(); delay( 100 ); }
getEEPROM.ino
// EEPROM // isUID EEPROM Unique ID void isUID() { // Is Unit ID uid = ""; for (int x = 0; x < 7; x++) { uid = uid + char(EEPROM.read(x)); } }
getRTC.ino
// DS3231 RTC Date and Time // Setup DS3231 RTC void isSetupRTC() { if (! rtc.begin()) { while (1); } if (rtc.lostPower()) { // Following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0)); } } // DS3231 RTC Date and Time void isRTC(){ // Date and Time sDate = ""; sTime = ""; // Date Time DateTime now = rtc.now(); // sData sDate += String(now.year(), DEC); sDate += "/"; sDate += String(now.month(), DEC); sDate += "/"; sDate += String(now.day(), DEC); // sTime sTime += String(now.hour(), DEC); sTime += ":"; sTime += String(now.minute(), DEC); sTime += ":"; sTime += String(now.second(), DEC); }
getSD.ino
// MicroSD Card // MicroSD Setup void setupSD() { // MicroSD Card pinMode( chipSelect , OUTPUT ); if(!SD.begin( chipSelect )){ ; return; } uint8_t cardType = SD.cardType(); // CARD NONE if(cardType == CARD_NONE){ ; return; } // SD Card Type if(cardType == CARD_MMC){ ; } else if(cardType == CARD_SD){ ; } else if(cardType == CARD_SDHC){ ; } else { ; } // Size uint64_t cardSize = SD.cardSize() / (1024 * 1024); } // MicroSD Card void isSD() { zzzzzz = ""; // DFR|EEPROM Unique ID|Version|Date|Time|Temperature|Humidity|Lux| // Soil Moisture|*\r zzzzzz = "DFR|" + uid + "|" + sver + "|" + sDate + "|" + sTime + "|" + String(Temperature) + "C|" + String(Humidity) + "%|" + String(SData) + "|" + String(SDataSM) + "|*\r"; // msg + 1 char msg[zzzzzz.length() + 1]; zzzzzz.toCharArray(msg, zzzzzz.length() + 1); // Append File appendFile(SD, "/dfrdata.txt", msg ); } // List Dir void listDir(fs::FS &fs, const char * dirname, uint8_t levels){ // List Dir dirname; File root = fs.open(dirname); if(!root){ return; } if(!root.isDirectory()){ return; } File file = root.openNextFile(); while(file){ if(file.isDirectory()){ file.name(); if(levels){ listDir(fs, file.name(), levels -1); } } else { file.name(); file.size(); } file = root.openNextFile(); } } // Write File void writeFile(fs::FS &fs, const char * path, const char * message){ // Write File path; File file = fs.open(path, FILE_WRITE); if(!file){ return; } if(file.print(message)){ ; } else { ; } file.close(); } // Append File void appendFile(fs::FS &fs, const char * path, const char * message){ // Append File path; File file = fs.open(path, FILE_APPEND); if(!file){ return; } if(file.print(message)){ ; } else { ; } file.close(); }
getSHT40.ino
// Fermion: SHT40 Temperature & Humidity Sensor // SHT40 Temperature & Humidity void isSHT40(){ // Fermion: SHT40 Temperature & Humidity Sensor // Temperature Temperature = (175 * TemperatureData/65535) - 45; // Humidity Humidity = (125 * HumidityData/65535) - 6; }
getSoilMoisture.ino
// Gravity: Analog Soil Moisture Sensor // Soil Moisture void isSoilMoisture(){ // SDataSM => 0~900 Soil Moisture SDataSM = map( SensorSM, 1, 3000, 0, 900); }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // EEPROM Size EEPROM.begin(EEPROM_SIZE); // EEPROM Unique ID isUID(); // Give display delay(100); // Set up I2C bus Wire.begin(); // Give display delay(100); // Setup BLE Scan isSetupBLEScan(); // Setup DS3231 RTC isSetupRTC(); //MicroSD Card setupSD(); // SHARP Display Start & Clear the Display display.begin(); // Clear Display display.clearDisplay(); // Initialize digital pin iLED as an output pinMode(iLED, OUTPUT); // Outputting high, the LED turns on digitalWrite(iLED, HIGH); // Initialize the LED Green pinMode(iLEDGreen, OUTPUT); // iLEDGreen HIGH digitalWrite(iLEDGreen, HIGH ); // Don Luc Electronics // Version // EEPROM isDisplayUID(); // Delay 5 Second delay( 5000 ); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Teacher, Instructor, E-Mentor, R&D and Consulting
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi, Arm, Silicon Labs, Espressif, Etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Automation
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- Artificial Intelligence (AI)
- RTOS
- Sensors, eHealth Sensors, Biosensor, and Biometric
- Research & Development (R & D)
- Consulting
Follow Us
Luc Paquin – Curriculum Vitae – 2024
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
LinkedIn: https://www.linkedin.com/in/jlucpaquin/
Don Luc
Project #29 – DFRobot – Display – Mk11
——
#DonLucElectronics #DonLuc #DFRobot #SHT40 #FireBeetle2ESP32E #EEPROM #RTC #SD #Display #Adafruit #ESP32 #IoT #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
Adafruit SHARP Memory Display Breakout – 1.3″ 168×144 Monochrome
The 1.3″ 168×144 SHARP Memory LCD display is a cross between an eInk (e-Paper) display and an LCD. It has the ultra-low power usage of eInk and the fast-refresh rates of an LCD. This model has a gray background, and pixels show up as black-on-gray for a nice e-Reader type display. It does not have a backlight, but it is daylight readable. For dark/night reading you may need to illuminate the LCD area with external LEDs.
The bare display is 3 Volt powered and 3 Volt logic, so we placed it on a fully assembled & tested breakout board with a 3 Volt regulator and level shifting circuitry. Now you can use it safely with 3 Volt or 5 Volt power and logic. There are four mounting holes so you can easily attach it to a box.
The display is “Write Only” which means that it only needs 3 pins to send data. However, the downside of a write-only display is that the entire 168×144 bits must be buffered by the microcontroller driver. That means you cannot use this with an ATmega328 or ATmega32u4. You must use a high-RAM chip such as ATSAMD21, Teensy 3, ESP8266, ESP32, etc. On those chips, this display works great and looks wonderful.
DL2405Mk01
1 x DFRobot FireBeetle 2 ESP32-E
1 x Adafruit SHARP Memory Display
1 x Adafruit MicroSD card breakout board+
1 x MicroSD 16 GB
1 x Adafruit DS3231 Precision RTC FeatherWing – RTC
1 x Battery CR1220
1 x Fermion: SHT40 Temperature & Humidity Sensor
1 x Fermion: BLE Sensor Beacon
1 x CR2032 Coin Cell Battery
1 x 1 x Lithium Ion Battery – 1000mAh
1 x Green LED
1 x SparkFun Serial Basic Breakout – CH340G
1 x SparkFun Cerberus USB Cable
1 x USB 3.1 Cable A to C
DFRobot FireBeetle 2 ESP32-E
LED – 2
DSCK – 12
DMOSI – 4
DSS – 16
SCK – 22
MOSI – 23
MISO – 19
CS – 13
SCL – 21
SDA – 22
LED – 14
VIN – +3.3V
GND – GND
——
DL2405Mk01p.ino
/****** Don Luc Electronics © ****** Software Version Information Project #29 - DFRobot - Display - Mk11 29-11 DL2404Mk01p.ino 1 x DFRobot FireBeetle 2 ESP32-E 1 x Adafruit SHARP Memory Display 1 x Adafruit MicroSD card breakout board+ 1 x MicroSD 16 GB 1 x Adafruit DS3231 Precision RTC FeatherWing - RTC 1 x Battery CR1220 1 x Fermion: SHT40 Temperature & Humidity Sensor 1 x Fermion: BLE Sensor Beacon 1 x CR2032 Coin Cell Battery 1 x 1 x Lithium Ion Battery - 1000mAh 1 x Green LED 1 x SparkFun Serial Basic Breakout - CH340G 1 x SparkFun Cerberus USB Cable 1 x USB 3.1 Cable A to C */ // Include the Library Code // EEPROM Library to Read and Write EEPROM // with Unique ID for Unit #include "EEPROM.h" // Wire #include <Wire.h> // Arduino #include <Arduino.h> // BLE Device #include <BLEDevice.h> // BLE Utils #include <BLEUtils.h> // BLEScan #include <BLEScan.h> // BLE Advertised Device #include <BLEAdvertisedDevice.h> // BLE Eddystone URL #include <BLEEddystoneURL.h> // BLE Eddystone TLM #include <BLEEddystoneTLM.h> // BLE Beacon #include <BLEBeacon.h> // DS3231 RTC Date and Time #include <RTClib.h> // SD Card #include "FS.h" #include "SD.h" #include "SPI.h" // SHARP Memory Display #include <Adafruit_SharpMem.h> #include <Adafruit_GFX.h> // ENDIAN_CHANGE #define ENDIAN_CHANGE_U16(x) ((((x)&0xFF00) >> 8) + (((x)&0xFF) << 8)) // DS3231 RTC Date and Time RTC_DS3231 rtc; String sDate; String sTime; // MicroSD Card const int chipSelect = 13; String zzzzzz = ""; // SHARP Memory Display #define SHARP_SCK 12 #define SHARP_MOSI 4 #define SHARP_SS 16 // Set the size of the display here, e.g. 144x168! Adafruit_SharpMem display(SHARP_SCK, SHARP_MOSI, SHARP_SS, 144, 168); // The currently-available SHARP Memory Display (144x168 pixels) // requires > 4K of microcontroller RAM; it WILL NOT WORK on Arduino Uno // or other <4K "classic" devices. #define BLACK 0 #define WHITE 1 // LED Green int iLEDGreen = 2; // Define LED int iLED = 14; // Fermion: SHT40 Temperature & Humidity Sensor // Temperature float TemperatureData; float Temperature; // Humidity float HumidityData; float Humidity; // In seconds int scanTime = 5; // BLE Scan BLEScan *pBLEScan; // My Advertised Device Callbacks class MyAdvertisedDeviceCallbacks : public BLEAdvertisedDeviceCallbacks { // onResult void onResult(BLEAdvertisedDevice advertisedDevice) { // Advertised Device if (advertisedDevice.haveName()) { // Name: Fermion: Sensor Beacon if(String(advertisedDevice.getName().c_str()) == "SHT40"){ // strManufacturerData std::string strManufacturerData = advertisedDevice.getManufacturerData(); uint8_t cManufacturerData[100]; strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0); // strManufacturerData.length for (int i = 0; i < strManufacturerData.length(); i++) { // cManufacturerData[i] cManufacturerData[i]; } // TemperatureData TemperatureData = int(cManufacturerData[2]<<8 | cManufacturerData[3]); // HumidityData HumidityData = int(cManufacturerData[5]<<8 | cManufacturerData[6]); } } } }; // EEPROM Unique ID Information #define EEPROM_SIZE 64 String uid = ""; // Software Version Information String sver = "29-11"; void loop() { // DS3231 RTC Date and Time isRTC(); // ScanResults isBLEScanResults(); // Fermion: SHT40 Temperature & Humidity Sensor isSHT40(); // Delay 3 Second delay(3000); // Display Date, Time, Temperature, Humidity isDisplayDTTH(); // MicroSD Card isSD(); // iLED HIGH digitalWrite(iLED, HIGH ); // Delay 1 Second delay(1000); }
getBLEScan.ino
// getBLEScan // Setup BLE Scan void isSetupBLEScan(){ // BLE Device BLEDevice::init(""); // Create new scan pBLEScan = BLEDevice::getScan(); // Set Advertised Device Callbacks pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks()); // Active scan uses more power, but get results faster pBLEScan->setActiveScan(true); // Set Interval pBLEScan->setInterval(100); // Less or equal setInterval value pBLEScan->setWindow(99); } // BLE Scan Results void isBLEScanResults(){ // Put your main code here, to run repeatedly: BLEScanResults foundDevices = pBLEScan->start(scanTime, false); // Delete results fromBLEScan buffer to release memory pBLEScan->clearResults(); }
getDisplay.ino
// SHARP Memory Display // SHARP Memory Display - UID void isDisplayUID() { // Text Display // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(3); display.setTextColor(BLACK); // Don Luc Electronics display.setCursor(0,10); display.println( "Don Luc" ); display.setTextSize(2); display.setCursor(0,40); display.println( "Electronics" ); // Version //display.setTextSize(3); display.setCursor(0,70); display.println( "Version" ); //display.setTextSize(2); display.setCursor(0,95); display.println( sver ); // EEPROM display.setCursor(0,120); display.println( "EEPROM" ); display.setCursor(0,140); display.println( uid ); // Refresh display.refresh(); delay( 100 ); } // Display Date, Time, Temperature, Humidity void isDisplayDTTH() { // Text Display Date // Clear Display display.clearDisplay(); display.setRotation(4); display.setTextSize(2); display.setTextColor(BLACK); // Date display.setCursor(0,5); display.println( sDate ); // Time display.setCursor(0,30); display.println( sTime ); // Temperature display.setCursor(0,55); display.print( Temperature ); display.println( "C" ); // Humidity display.setCursor(0,80); display.print( Humidity ); display.println( "%" ); // Refresh display.refresh(); delay( 100 ); }
getEEPROM.ino
// EEPROM // isUID EEPROM Unique ID void isUID() { // Is Unit ID uid = ""; for (int x = 0; x < 7; x++) { uid = uid + char(EEPROM.read(x)); } }
getRTC.ino
// DS3231 RTC Date and Time // Setup DS3231 RTC void isSetupRTC() { if (! rtc.begin()) { while (1); } if (rtc.lostPower()) { // Following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0)); } } // DS3231 RTC Date and Time void isRTC(){ // Date and Time sDate = ""; sTime = ""; // Date Time DateTime now = rtc.now(); // sData sDate += String(now.year(), DEC); sDate += "/"; sDate += String(now.month(), DEC); sDate += "/"; sDate += String(now.day(), DEC); // sTime sTime += String(now.hour(), DEC); sTime += ":"; sTime += String(now.minute(), DEC); sTime += ":"; sTime += String(now.second(), DEC); }
getSD.ino
// MicroSD Card // MicroSD Setup void setupSD() { // MicroSD Card pinMode( chipSelect , OUTPUT ); if(!SD.begin( chipSelect )){ ; return; } uint8_t cardType = SD.cardType(); // CARD NONE if(cardType == CARD_NONE){ ; return; } // SD Card Type if(cardType == CARD_MMC){ ; } else if(cardType == CARD_SD){ ; } else if(cardType == CARD_SDHC){ ; } else { ; } // Size uint64_t cardSize = SD.cardSize() / (1024 * 1024); } // MicroSD Card void isSD() { zzzzzz = ""; // DFR|EEPROM Unique ID|Version|Date|Time|Temperature|Humidity|*\r zzzzzz = "DFR|" + uid + "|" + sver + "|" + sDate + "|" + sTime + "|" + String(Temperature) + "C|" + String(Humidity) + "%|*\r"; // msg + 1 char msg[zzzzzz.length() + 1]; zzzzzz.toCharArray(msg, zzzzzz.length() + 1); // Append File appendFile(SD, "/dfrdata.txt", msg ); } // List Dir void listDir(fs::FS &fs, const char * dirname, uint8_t levels){ // List Dir dirname; File root = fs.open(dirname); if(!root){ return; } if(!root.isDirectory()){ return; } File file = root.openNextFile(); while(file){ if(file.isDirectory()){ file.name(); if(levels){ listDir(fs, file.name(), levels -1); } } else { file.name(); file.size(); } file = root.openNextFile(); } } // Write File void writeFile(fs::FS &fs, const char * path, const char * message){ // Write File path; File file = fs.open(path, FILE_WRITE); if(!file){ return; } if(file.print(message)){ ; } else { ; } file.close(); } // Append File void appendFile(fs::FS &fs, const char * path, const char * message){ // Append File path; File file = fs.open(path, FILE_APPEND); if(!file){ return; } if(file.print(message)){ ; } else { ; } file.close(); }
getSHT40.ino
// Fermion: SHT40 Temperature & Humidity Sensor // SHT40 Temperature & Humidity void isSHT40(){ // Fermion: SHT40 Temperature & Humidity Sensor // Temperature Temperature = (175 * TemperatureData/65535) - 45; // Humidity Humidity = (125 * HumidityData/65535) - 6; }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // EEPROM Size EEPROM.begin(EEPROM_SIZE); // EEPROM Unique ID isUID(); // Give display delay(100); // Set up I2C bus Wire.begin(); // Give display delay(100); // Setup BLE Scan isSetupBLEScan(); // Setup DS3231 RTC isSetupRTC(); //MicroSD Card setupSD(); // SHARP Display Start & Clear the Display display.begin(); // Clear Display display.clearDisplay(); // Initialize digital pin iLED as an output pinMode(iLED, OUTPUT); // Outputting high, the LED turns on digitalWrite(iLED, HIGH); // Initialize the LED Green pinMode(iLEDGreen, OUTPUT); // iLEDGreen HIGH digitalWrite(iLEDGreen, HIGH ); // Don Luc Electronics // Version // EEPROM isDisplayUID(); // Delay 5 Second delay( 5000 ); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Teacher, Instructor, E-Mentor, R&D and Consulting
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi, Arm, Silicon Labs, Espressif, Etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Automation
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- Artificial Intelligence (AI)
- RTOS
- Sensors, eHealth Sensors, Biosensor, and Biometric
- Research & Development (R & D)
- Consulting
Follow Us
Luc Paquin – Curriculum Vitae – 2024
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
LinkedIn: https://www.linkedin.com/in/jlucpaquin/
Don Luc
Project #29 – DFRobot – EEPROM, RTC, SD – Mk010
——
#DonLucElectronics #DonLuc #DFRobot #SHT40 #FireBeetle2ESP32E #EEPROM #RTC #SD #Adafruit #ESP32 #IoT #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
EEPROM
EEPROM is a type of non-volatile memory. It is used in computers, usually integrated in microcontrollers such as smart cards and remote keyless systems, or as a separate chip device, to store relatively small amounts of data by allowing individual bytes to be erased and reprogrammed.
RTC
A real-time clock (RTC) is an electronic device, most often in the form of an integrated circuit, that measures the passage of time. Although the term often refers to the devices in personal computers, servers and embedded systems, RTCs are present in almost any electronic device which needs to keep accurate time of day.
Micro SD Card Breakout Board
If you have a project with any audio, video, graphics, data logging, etc in it, you’ll find that having a removable storage option is essential. Most microcontrollers have extremely limited built-in storage. If you’re doing any sort of data logging, graphics or audio, you’ll need at least a megabyte of storage, and gigabytes. To get that kind of storage we’re going to use the same type that’s in every digital camera and mp3 player: flash cards. Often called microSD cards, they can pack gigabytes into a space smaller than a coin. They’re also available in every electronics shop so you can easily get more and best of all, many computers have microSD card readers built in so you can move data back.
DL2404Mk01
1 x DFRobot FireBeetle 2 ESP32-E
1 x Adafruit MicroSD card breakout board+
1 x MicroSD 16 GB
1 x Adafruit DS3231 Precision RTC FeatherWing – RTC
1 x Battery CR1220
1 x Fermion: SHT40 Temperature & Humidity Sensor
1 x Fermion: BLE Sensor Beacon
1 x CR2032 Coin Cell Battery
1 x 1 x Lithium Ion Battery – 1000mAh
1 x Green LED
1 x SparkFun Serial Basic Breakout – CH340G
1 x SparkFun Cerberus USB Cable
1 x USB 3.1 Cable A to C
DFRobot FireBeetle 2 ESP32-E
LED – 2
SCK – 22
MOSI – 23
MISO – 19
CS – 13
SCL – 21
SDA – 22
LED – 14
VIN – +3.3V
GND – GND
——
DL2404Mk01p.ino
/****** Don Luc Electronics © ****** Software Version Information Project #29 - DFRobot - RTC SD - Mk10 29-10 DL2404Mk01p.ino 1 x DFRobot FireBeetle 2 ESP32-E 1 x Adafruit MicroSD card breakout board+ 1 x MicroSD 16 GB 1 x Adafruit DS3231 Precision RTC FeatherWing - RTC 1 x Battery CR1220 1 x Fermion: SHT40 Temperature & Humidity Sensor 1 x Fermion: BLE Sensor Beacon 1 x CR2032 Coin Cell Battery 1 x 1 x Lithium Ion Battery - 1000mAh 1 x Green LED 1 x SparkFun Serial Basic Breakout - CH340G 1 x SparkFun Cerberus USB Cable 1 x USB 3.1 Cable A to C */ // Include the Library Code // EEPROM Library to Read and Write EEPROM // with Unique ID for Unit #include "EEPROM.h" // Wire #include <Wire.h> // Arduino #include <Arduino.h> // BLE Device #include <BLEDevice.h> // BLE Utils #include <BLEUtils.h> // BLEScan #include <BLEScan.h> // BLE Advertised Device #include <BLEAdvertisedDevice.h> // BLE Eddystone URL #include <BLEEddystoneURL.h> // BLE Eddystone TLM #include <BLEEddystoneTLM.h> // BLE Beacon #include <BLEBeacon.h> // DS3231 RTC Date and Time #include <RTClib.h> // SD Card #include "FS.h" #include "SD.h" #include "SPI.h" // ENDIAN_CHANGE #define ENDIAN_CHANGE_U16(x) ((((x)&0xFF00) >> 8) + (((x)&0xFF) << 8)) // DS3231 RTC Date and Time RTC_DS3231 rtc; String sDate; String sTime; // MicroSD Card const int chipSelect = 13; String zzzzzz = ""; // LED Green int iLEDGreen = 2; // Define LED int iLED = 14; // Fermion: SHT40 Temperature & Humidity Sensor // Temperature float TemperatureData; float Temperature; // Humidity float HumidityData; float Humidity; // In seconds int scanTime = 5; // BLE Scan BLEScan *pBLEScan; // My Advertised Device Callbacks class MyAdvertisedDeviceCallbacks : public BLEAdvertisedDeviceCallbacks { // onResult void onResult(BLEAdvertisedDevice advertisedDevice) { // Advertised Device if (advertisedDevice.haveName()) { // Name: Fermion: Sensor Beacon if(String(advertisedDevice.getName().c_str()) == "SHT40"){ // strManufacturerData std::string strManufacturerData = advertisedDevice.getManufacturerData(); uint8_t cManufacturerData[100]; strManufacturerData.copy((char *)cManufacturerData, strManufacturerData.length(), 0); // strManufacturerData.length for (int i = 0; i < strManufacturerData.length(); i++) { // cManufacturerData[i] cManufacturerData[i]; } // TemperatureData TemperatureData = int(cManufacturerData[2]<<8 | cManufacturerData[3]); // HumidityData HumidityData = int(cManufacturerData[5]<<8 | cManufacturerData[6]); } } } }; // EEPROM Unique ID Information #define EEPROM_SIZE 64 String uid = ""; // Software Version Information String sver = "29-10"; void loop() { // DS3231 RTC Date and Time isRTC(); // ScanResults isBLEScanResults(); // Fermion: SHT40 Temperature & Humidity Sensor isSHT40(); // Delay 3 Second delay(3000); // MicroSD Card isSD(); // iLED HIGH digitalWrite(iLED, HIGH ); // Delay 1 Second delay(1000); }
getBLEScan.ino
// getBLEScan // Setup BLE Scan void isSetupBLEScan(){ // BLE Device BLEDevice::init(""); // Create new scan pBLEScan = BLEDevice::getScan(); // Set Advertised Device Callbacks pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks()); // Active scan uses more power, but get results faster pBLEScan->setActiveScan(true); // Set Interval pBLEScan->setInterval(100); // Less or equal setInterval value pBLEScan->setWindow(99); } // BLE Scan Results void isBLEScanResults(){ // Put your main code here, to run repeatedly: BLEScanResults foundDevices = pBLEScan->start(scanTime, false); // Delete results fromBLEScan buffer to release memory pBLEScan->clearResults(); }
getEEPROM.ino
// EEPROM // isUID EEPROM Unique ID void isUID() { // Is Unit ID uid = ""; for (int x = 0; x < 7; x++) { uid = uid + char(EEPROM.read(x)); } }
getRTC.ino
// DS3231 RTC Date and Time // Setup DS3231 RTC void isSetupRTC() { if (! rtc.begin()) { while (1); } if (rtc.lostPower()) { // Following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0)); } } // DS3231 RTC Date and Time void isRTC(){ // Date and Time sDate = ""; sTime = ""; // Date Time DateTime now = rtc.now(); // sData sDate += String(now.year(), DEC); sDate += "/"; sDate += String(now.month(), DEC); sDate += "/"; sDate += String(now.day(), DEC); // sTime sTime += String(now.hour(), DEC); sTime += ":"; sTime += String(now.minute(), DEC); sTime += ":"; sTime += String(now.second(), DEC); }
getSD.ino
// MicroSD Card // MicroSD Setup void setupSD() { // MicroSD Card pinMode( chipSelect , OUTPUT ); if(!SD.begin( chipSelect )){ ; return; } uint8_t cardType = SD.cardType(); // CARD NONE if(cardType == CARD_NONE){ ; return; } // SD Card Type if(cardType == CARD_MMC){ ; } else if(cardType == CARD_SD){ ; } else if(cardType == CARD_SDHC){ ; } else { ; } // Size uint64_t cardSize = SD.cardSize() / (1024 * 1024); } // MicroSD Card void isSD() { zzzzzz = ""; // DFR|EEPROM Unique ID|Version|Date|Time|Temperature|Humidity|*\r zzzzzz = "DFR|" + uid + "|" + sver + "|" + sDate + "|" + sTime + "|" + String(Temperature) + "C|" + String(Humidity) + "%|*\r"; // msg + 1 char msg[zzzzzz.length() + 1]; zzzzzz.toCharArray(msg, zzzzzz.length() + 1); // Append File appendFile(SD, "/dfrdata.txt", msg ); } // List Dir void listDir(fs::FS &fs, const char * dirname, uint8_t levels){ // List Dir dirname; File root = fs.open(dirname); if(!root){ return; } if(!root.isDirectory()){ return; } File file = root.openNextFile(); while(file){ if(file.isDirectory()){ file.name(); if(levels){ listDir(fs, file.name(), levels -1); } } else { file.name(); file.size(); } file = root.openNextFile(); } } // Write File void writeFile(fs::FS &fs, const char * path, const char * message){ // Write File path; File file = fs.open(path, FILE_WRITE); if(!file){ return; } if(file.print(message)){ ; } else { ; } file.close(); } // Append File void appendFile(fs::FS &fs, const char * path, const char * message){ // Append File path; File file = fs.open(path, FILE_APPEND); if(!file){ return; } if(file.print(message)){ ; } else { ; } file.close(); }
getSHT40.ino
// Fermion: SHT40 Temperature & Humidity Sensor // SHT40 Temperature & Humidity void isSHT40(){ // Fermion: SHT40 Temperature & Humidity Sensor // Temperature Temperature = (175 * TemperatureData/65535) - 45; // Humidity Humidity = (125 * HumidityData/65535) - 6; }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // EEPROM Size EEPROM.begin(EEPROM_SIZE); // EEPROM Unique ID isUID(); // Give display delay(100); // Set up I2C bus Wire.begin(); // Give display delay(100); // Setup BLE Scan isSetupBLEScan(); // Setup DS3231 RTC isSetupRTC(); //MicroSD Card setupSD(); // Initialize digital pin iLED as an output pinMode(iLED, OUTPUT); // Outputting high, the LED turns on digitalWrite(iLED, HIGH); // Initialize the LED Green pinMode(iLEDGreen, OUTPUT); // iLEDGreen HIGH digitalWrite(iLEDGreen, HIGH ); // Delay 5 Second delay( 5000 ); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Teacher, Instructor, E-Mentor, R&D and Consulting
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi, Arm, Silicon Labs, Espressif, Etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Automation
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- Artificial Intelligence (AI)
- RTOS
- Sensors, eHealth Sensors, Biosensor, and Biometric
- Research & Development (R & D)
- Consulting
Follow Us
Luc Paquin – Curriculum Vitae – 2024
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
LinkedIn: https://www.linkedin.com/in/jlucpaquin/
Don Luc
Project #28 – Sensors – MMA7361 – Mk14
——
#DonLucElectronics #DonLuc #Sensors #MMA7361 #Adafruit #SparkFun #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
SparkFun Triple Axis Accelerometer Breakout – MMA7361
This is a breakout board for Freescale’s MMA7361L three-axis analog MEMS accelerometer. The sensor requires a very low amount of power and has a g-select input which switches the accelerometer between ±1.5g and ±6g measurement ranges. Other features include a sleep mode, signal conditioning, a 1-pole low pass filter, temperature compensation, self test, and 0g-detect which detects linear freefall. Zero-g offset and sensitivity are factory set and require no external devices.
This breadboard friendly board breaks out every pin of the MMA7361L to a 9-pin, 0.1″ pitch header. The sensor works on power between 2.2 and 3.6VDC (3.3 Volt optimal), and typically consumes just 400µA of current. All three axes have their own analog output.
- Two selectable measuring ranges (±1.5g, ±6g)
- Breadboard friendly – 0.1″ pitch header
- Low current consumption: 400 µA
- Sleep mode: 3 µA
- Low voltage operation: 2.2 Volt – 3.6 Volt
- High sensitivity (800 mV/g at 1.5g)
- Fast turn on time (0.5 ms enable response time)
- Self test for freefall detect diagnosis
- 0g-Detect for freefall protection
- Signal conditioning with low pass filter
- Robust design, high shocks survivability
DL2401Mk04
1 x SparkFun Thing Plus – ESP32 WROOM
1 x DS3231 Precision RTC FeatherWing
1 x SparkFun Triple Axis Accelerometer Breakout – MMA7361
1 x Rocker Switch – SPST
1 x Resistor 10K Ohm
1 x CR1220 3V Lithium Coin Cell Battery
1 x 1 x Lithium Ion Battery – 1000mAh
1 x Terminal Block Breakout FeatherWing
1 x SparkFun Cerberus USB Cable
SparkFun Thing Plus – ESP32 WROOM
LED – LED_BUILTIN
SDA – Digital 23
SCL – Digital 22
SW1 – Digital 21
XAC – Analog A0
YAC – Analog A1
ZAC – Analog A2
VIN – +3.3V
GND – GND
——
DL2401Mk04p.ino
/****** Don Luc Electronics © ****** Software Version Information Project #28 - Sensors - MMA7361 - Mk14 28-14 DL2401Mk04p.ino 1 x SparkFun Thing Plus - ESP32 WROOM 1 x DS3231 Precision RTC FeatherWing 1 x SparkFun Triple Axis Accelerometer Breakout - MMA7361 1 x Rocker Switch - SPST 1 x Resistor 10K Ohm 1 x Lithium Ion Battery - 1000mAh 1 x CR1220 3V Lithium Coin Cell Battery 1 x Terminal Block Breakout FeatherWing 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // Bluetooth LE keyboard #include <BleKeyboard.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Serial Peripheral Interface #include <SPI.h> // DS3231 Precision RTC #include <RTClib.h> // Bluetooth LE Keyboard BleKeyboard bleKeyboard; String sKeyboard = ""; // Send Size byte sendSize = 0; // DS3231 Precision RTC RTC_DS3231 rtc; String dateRTC = ""; String timeRTC = ""; // Accelerometer MMA7361 int XAc = A0; int YAc = A1; int ZAc = A2; // Read int x = 0; int y = 0; int z = 0; // The number of the Rocker Switch pin int iSwitch = 21; // Variable for reading the button status int SwitchState = 0; // Software Version Information String sver = "28-14"; void loop() { // Date and Time RTC isRTC (); // Accelerometer MMA7361 isMMA7361(); // Read the state of the Switch value: SwitchState = digitalRead(iSwitch); // Check if the button is pressed. If it is, the SwitchState is HIGH: if (SwitchState == HIGH) { // Bluetooth LE Keyboard isBluetooth(); } // Delay 1 Second delay(1000); }
getAccelerometer.ino
// Accelerometer MMA7361 // isMMA7361 void isMMA7361(){ // Accelerometer Read x = analogRead(XAc); y = analogRead(YAc); z = analogRead(ZAc); sKeyboard = sKeyboard + String(x) + "|" + String(y) + "|" + String(z) + "|*"; }
getBleKeyboard.ino
// Ble Keyboard // Bluetooth // isBluetooth void isBluetooth() { // ESP32 BLE Keyboard if(bleKeyboard.isConnected()) { // Send Size Length sendSize = sKeyboard.length(); // Send Size, charAt for(byte i = 0; i < sendSize+1; i++){ // Write bleKeyboard.write(sKeyboard.charAt(i)); delay(50); } bleKeyboard.write(KEY_RETURN); } }
getRTC.ino
// Date & Time // DS3231 Precision RTC void isSetupRTC() { // DS3231 Precision RTC if (! rtc.begin()) { //Serial.println("Couldn't find RTC"); //Serial.flush(); while (1) delay(10); } if (rtc.lostPower()) { //Serial.println("RTC lost power, let's set the time!"); // When time needs to be set on a new device, or after a power loss, the // following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: //rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0)); } } // Date and Time RTC void isRTC () { // Date and Time dateRTC = ""; timeRTC = ""; DateTime now = rtc.now(); // Date dateRTC = now.year(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.month(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.day(), DEC; // Time timeRTC = now.hour(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.minute(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.second(), DEC; // bleKeyboard sKeyboard = "SEN|" + sver + "|" + String(dateRTC) + "|" + String(timeRTC) + "|"; }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // Bluetooth LE keyboard bleKeyboard.begin(); // Wire - Inialize I2C Hardware Wire.begin(); // Give display time to power on delay(100); // Date & Time RTC // DS3231 Precision RTC isSetupRTC(); // Give display time to power on delay(100); // Initialize the Switch pin as an input pinMode(iSwitch, INPUT); // Initialize digital pin LED_BUILTIN as an output pinMode(LED_BUILTIN, OUTPUT); // Turn the LED on HIGH digitalWrite(LED_BUILTIN, HIGH); // Delay 5 Second delay( 5000 ); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Teacher, Instructor, E-Mentor, R&D and Consulting
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi, Arm, Silicon Labs, Espressif, Etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Automation
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- Artificial Intelligence (AI)
- RTOS
- eHealth Sensors, Biosensor, and Biometric
- Research & Development (R & D)
- Consulting
Follow Us
Luc Paquin – Curriculum Vitae – 2024
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #28 – Sensors – PIR Motion Sensor – Mk13
——
#DonLucElectronics #DonLuc #Sensors #PIR #Adafruit #SparkFun #Pololu #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
PIR Motion Sensor (JST)
This is a simple to use motion sensor. Power it up and wait 1-2 seconds for the sensor to get a snapshot of the still room. If anything moves after that period, the “Alarm” pin will go low. This unit works great from 5 to 12 Volt. The alarm pin is an open collector meaning you will need a pull up resistor on the alarm pin. The open drain setup allows multiple motion sensors to be connected on a single input pin. If any of the motion sensors go off, the input pin will be pulled low.
At their most fundamental level, PIR sensor’s are infrared-sensitive light detectors. By monitoring light in the infrared spectrum, PIR sensors can sense subtle changes in temperature across the area they’re viewing. When a human or some other object comes into the PIR’s field-of-view, the radiation pattern changes, and the PIR interprets that change as movement. All that’s left for us to connect is three pins: power, ground, and the output signal.
DL2401Mk02
1 x SparkFun Thing Plus – ESP32 WROOM
1 x DS3231 Precision RTC FeatherWing
1 x PIR Motion Sensor
1 x Pololu 5V Step-Up Voltage Regulator U1V10F5
1 x Rocker Switch – SPST
1 x Resistor 10K Ohm
1 x CR1220 3V Lithium Coin Cell Battery
1 x 1 x Lithium Ion Battery – 1000mAh
1 x Terminal Block Breakout FeatherWing
1 x SparkFun Cerberus USB Cable
SparkFun Thing Plus – ESP32 WROOM
LED – LED_BUILTIN
SDA – Digital 23
SCL – Digital 22
SW1 – Digital 21
PIR – Digital 14
VIN – +3.3V
VIN – +5V
GND – GND
——
DL2401Mk01p.ino
/****** Don Luc Electronics © ****** Software Version Information Project #28 - Sensors - PIR Motion Sensor - Mk13 28-13 DL2401Mk01p.ino 1 x SparkFun Thing Plus - ESP32 WROOM 1 x DS3231 Precision RTC FeatherWing 1 x PIR Motion Sensor 1 x Pololu 5V Step-Up Voltage Regulator U1V10F5 1 x Rocker Switch - SPST 1 x Resistor 10K Ohm 1 x Lithium Ion Battery - 1000mAh 1 x CR1220 3V Lithium Coin Cell Battery 1 x Terminal Block Breakout FeatherWing 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // Bluetooth LE keyboard #include <BleKeyboard.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Serial Peripheral Interface #include <SPI.h> // DS3231 Precision RTC #include <RTClib.h> // Bluetooth LE Keyboard BleKeyboard bleKeyboard; String sKeyboard = ""; // Send Size byte sendSize = 0; // DS3231 Precision RTC RTC_DS3231 rtc; String dateRTC = ""; String timeRTC = ""; // PIR Motion // Motion detector const int iMotion = 14; // Proximity int proximity = LOW; String Det = ""; // The number of the Rocker Switch pin int iSwitch = 21; // Variable for reading the button status int SwitchState = 0; // Software Version Information String sver = "28-13"; void loop() { // Date and Time RTC isRTC (); // isPIR Motion isPIR(); // Read the state of the Switch value: SwitchState = digitalRead(iSwitch); // Check if the button is pressed. If it is, the SwitchState is HIGH: if (SwitchState == HIGH) { // Bluetooth LE Keyboard isBluetooth(); } // Delay 1 Second delay(1000); }
getBleKeyboard.ino
// Ble Keyboard // Bluetooth // isBluetooth void isBluetooth() { // ESP32 BLE Keyboard if(bleKeyboard.isConnected()) { // Send Size Length sendSize = sKeyboard.length(); // Send Size, charAt for(byte i = 0; i < sendSize+1; i++){ // Write bleKeyboard.write(sKeyboard.charAt(i)); delay(50); } bleKeyboard.write(KEY_RETURN); } }
getPIR.ino
// PIR Motion // Setup PIR void setupPIR() { // Setup PIR Montion pinMode(iMotion, INPUT_PULLUP); } // isPIR Motion void isPIR() { // Proximity proximity = digitalRead(iMotion); if (proximity == LOW) { // PIR Motion Sensor's LOW, Motion is detected Det = "Motion Yes"; } else { // PIR Motion Sensor's HIGH Det = "No"; } sKeyboard = sKeyboard + String(Det) + "|*"; }
getRTC.ino
// Date & Time // DS3231 Precision RTC void isSetupRTC() { // DS3231 Precision RTC if (! rtc.begin()) { //Serial.println("Couldn't find RTC"); //Serial.flush(); while (1) delay(10); } if (rtc.lostPower()) { //Serial.println("RTC lost power, let's set the time!"); // When time needs to be set on a new device, or after a power loss, the // following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: //rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0)); } } // Date and Time RTC void isRTC () { // Date and Time dateRTC = ""; timeRTC = ""; DateTime now = rtc.now(); // Date dateRTC = now.year(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.month(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.day(), DEC; // Time timeRTC = now.hour(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.minute(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.second(), DEC; // bleKeyboard sKeyboard = "SEN|" + sver + "|" + String(dateRTC) + "|" + String(timeRTC) + "|"; }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // Bluetooth LE keyboard bleKeyboard.begin(); // Wire - Inialize I2C Hardware Wire.begin(); // Give display time to power on delay(100); // Date & Time RTC // DS3231 Precision RTC isSetupRTC(); // Give display time to power on delay(100); // PIR Motion // Setup PIR setupPIR(); // Initialize the Switch pin as an input pinMode(iSwitch, INPUT); // Initialize digital pin LED_BUILTIN as an output pinMode(LED_BUILTIN, OUTPUT); // Turn the LED on HIGH digitalWrite(LED_BUILTIN, HIGH); // Delay 5 Second delay( 5000 ); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Teacher, Instructor, E-Mentor, R&D and Consulting
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi, Arm, Silicon Labs, Espressif, Etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Automation
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- Artificial Intelligence (AI)
- RTOS
- eHealth Sensors, Biosensor, and Biometric
- Research & Development (R & D)
- Consulting
Follow Us
Luc Paquin – Curriculum Vitae – 2024
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #05: Lamps – NeoPixels – Mk02
——
#DonLucElectronics #DonLuc #Lamps #NeoPixels #Keyboard #Adafruit #SparkFun #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
——
NeoPixels
The WS2812 Integrated Light Source, or NeoPixel in Adafruit parlance, is the latest advance in the quest for a simple, scalable and affordable full-color LED. Red, green and blue LEDs are integrated alongside a driver chip into a tiny surface-mount package controlled through a single wire. They can be used individually, chained into longer strings or assembled into still more interesting form-factors.
NeoPixels don’t just light up on their own; they require a microcontroller, such as Arduino, and some programming. We provide some sample code to get you started. To create your own effects and animation, you’ll need some programming practice. If this is a new experience, work through some of the beginning Arduino tutorials to get a feel for the language.
NeoPixel Stick – 8 x 5050 RGB LED
Make your own little LED strip arrangement with this stick of NeoPixel LEDs. We crammed 8 of the tiny 5050 smart RGB LEDs onto a PCB with mounting holes and a chainable design. Use only one microcontroller pin to control as many as you can chain together. Each LED is addressable as the driver chip is inside the LED. Each one has constant current drive so the color will be very consistent even if the voltage varies, and no external choke resistors are required making the design slim. Power the whole thing with 5VDC and you’re ready to rock. The LEDs are “Chainable” by connecting the output of one stick into the input of another. There is a single data line with a very timing-specific protocol.
DL2401Mk01
1 x Arduino Pro Mini 328 – 3.3V/8MHz
2 x NeoPixel Stick – 8 x 5050 RGB LED
2 x Rotary Potentiometer – 10k Ohm
1 x Potentiometer Knob – Soft Touch T18 – Blue
1 x Potentiometer Knob – Soft Touch T18 – Red
1 x Mountable Slide Switch
1 x SparkFun USB Mini-B Breakout
1 x Enclosure
1 x SparkFun Cerberus USB Cable
Arduino Pro Mini 328 – 3.3V/8MHz
NPX – Digital 8
BRI – Analog A0
COL – Analog A3
VIN – +3.3V
VIN – +5V
GND – GND
——
DL2401Mk01p.ino
/****** Don Luc Electronics © ****** Software Version Information Project #05: Lamps - NeoPixels - Mk02 05-02 DL2401Mk01p.ino 1 x Arduino Pro Mini 328 - 3.3V/8MHz 2 x NeoPixel Stick - 8 x 5050 RGB LED 2 x Rotary Potentiometer - 10k Ohm 1 x Potentiometer Knob - Soft Touch T18 - Blue 1 x Potentiometer Knob - Soft Touch T18 - Red 1 x Mountable Slide Switch 1 x SparkFun USB Mini-B Breakout 1 x Enclosure 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // NeoPixel #include <Adafruit_NeoPixel.h> // NeoPixels #define PIN 8 // How many NeoPixels are attached to the Arduino => 16 #define NUMPIXELS 16 Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800); // Color // Red int red = 0; // Green int green = 0; // Blue int blue = 0; // 2 x Panel Mount 1K potentiometer // Brighten const int iSensorBrighten = A0; int BrightenValue = 0; int sensorMin = 1023; // minimum sensor value int sensorMax = 0; // maximum sensor value // Color const int iSensorColor = A3; int y = 0; int ColorVal = 0; // Software Version Information String sver = "05-02"; void loop() { // Color isRangeColor(); // Brighten isNeopix(); }
getNeopix.ino
// Neopix void isNeopix() { for(int i=0; i<NUMPIXELS; i++){ // Neopix BrightenValue = analogRead( iSensorBrighten ); // Apply the calibration to the sensor reading BrightenValue = map(BrightenValue, sensorMin, sensorMax, 0, 255); // In case the sensor value is outside the range seen during calibration BrightenValue = constrain(BrightenValue, 0, 255); pixels.setBrightness( BrightenValue ); // The pixels.Color takes RGB values, from 0,0,0 up to 255,255,255 pixels.setPixelColor(i, pixels.Color(red,green,blue)); // This sends the updated pixel color to the hardware pixels.show(); } } // Range Color void isRangeColor() { // Range Color ColorVal = analogRead( iSensorColor ); y = (ColorVal / 127); switch ( y ) { case 0: // White red = 255; green = 255; blue = 255; break; case 1: // Yellow red = 255; green = 255; blue = 0; isNeopix(); break; case 2: // Pink red = 255; green = 153; blue = 203; isNeopix(); break; case 3: // Blue red = 0; green = 102; blue = 204; isNeopix(); isNeopix(); break; case 4: // Green red = 0; green = 255; blue = 0; isNeopix(); break; case 5: // Orange red = 255; green = 102; blue = 0; isNeopix(); break; case 6: // Violet red = 204; green = 102; blue = 204; isNeopix(); break; case 7: // Red red = 255; green = 0; blue = 0; isNeopix(); break; } }
setup.ino
// Setup void setup() { // This initializes the NeoPixel library pixels.begin(); delay(50); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Teacher, Instructor, E-Mentor, R&D and Consulting
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi, Arm, Silicon Labs, Espressif, Etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Automation
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- Artificial Intelligence (AI)
- RTOS
- eHealth Sensors, Biosensor, and Biometric
- Research & Development (R & D)
- Consulting
Follow Us
Luc Paquin – Curriculum Vitae – 2024
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #28 – Sensors – HC-SR04 – Mk12
——
#DonLucElectronics #DonLuc #Sensors #LSM9DS1 #IMU #GPSReceiver #Adafruit #SparkFun #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
Pololu 5 Volt Step-Up Voltage Regulator U1V10F5
This tiny U1V10F5 switching step-up voltage regulator efficiently generates 5 Volt from input voltages as low as 0.5 Volt. Unlike most boost regulators, the U1V10F5 automatically switches to a linear down-regulation mode when the input voltage exceeds the output.
Ultrasonic Distance Sensor – HC-SR04 (5 Volt)
This is the HC-SR04 ultrasonic distance sensor. This economical sensor provides 2 Centimetres to 400 Centimetres of non-contact measurement functionality with a ranging accuracy that can reach up to 3 Millimetres. Each HC-SR04 module includes an ultrasonic transmitter, a receiver and a control circuit. There are only four pins that you need to worry about on the HC-SR04: VCC (Power), Trig (Trigger), Echo (Receive), and GND (Ground). This sensor has additional control circuitry that can prevent inconsistent “Bouncy” data depending on the application.
DL2310Mk01
1 x SparkFun Thing Plus – ESP32 WROOM
1 x DS3231 Precision RTC FeatherWing
1 x GPS Receiver – GP-20U7 (56 Channel)
1 x SparkFun 9DoF IMU Breakout – LSM9DS1
1 x Ultrasonic Distance Sensor – HC-SR04 (5V)
1 x Pololu 5V Step-Up Voltage Regulator U1V10F5
1 x Rocker Switch – SPST
1 x Resistor 10K Ohm
1 x CR1220 3V Lithium Coin Cell Battery
1 x 1 x Lithium Ion Battery – 1000mAh
1 x Terminal Block Breakout FeatherWing
1 x SparkFun Cerberus USB Cable
SparkFun Thing Plus – ESP32 WROOM
LED – LED_BUILTIN
SDA – Digital 23
SCL – Digital 22
SW1 – Digital 21
GPT – Digital 17
GPR – Digital 16
TRI – Digital 15
ECH – Digital 14
VIN – +3.3V
VIN – +5V
GND – GND
——
DL2310Mk01p.ino
/****** Don Luc Electronics © ****** Software Version Information Project #28 - Sensors - HC-SR04 - Mk12 28-12 DL2310Mk01p.ino 1 x SparkFun Thing Plus - ESP32 WROOM 1 x DS3231 Precision RTC FeatherWing 1 x GPS Receiver - GP-20U7 (56 Channel) 1 x SparkFun 9DoF IMU Breakout - LSM9DS1 1 x Ultrasonic Distance Sensor - HC-SR04 (5V) 1 x Pololu 5V Step-Up Voltage Regulator U1V10F5 1 x Rocker Switch - SPST 1 x Resistor 10K Ohm 1 x Lithium Ion Battery - 1000mAh 1 x CR1220 3V Lithium Coin Cell Battery 1 x Terminal Block Breakout FeatherWing 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // Bluetooth LE keyboard #include <BleKeyboard.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Serial Peripheral Interface #include <SPI.h> // DS3231 Precision RTC #include <RTClib.h> // GPS Receiver #include <TinyGPS++.h> // ESP32 Hardware Serial #include <HardwareSerial.h> // LSM9DS1 9DOF Sensor #include <SparkFunLSM9DS1.h> // Bluetooth LE Keyboard BleKeyboard bleKeyboard; String sKeyboard = ""; // Send Size byte sendSize = 0; // DS3231 Precision RTC RTC_DS3231 rtc; String dateRTC = ""; String timeRTC = ""; // GPS Receiver #define gpsRXPIN 16 // This one is unused and doesnt have a conection #define gpsTXPIN 17 // The TinyGPS++ object TinyGPSPlus gps; // Latitude float TargetLat; // Longitude float TargetLon; // GPS Date, Time // GPS Date String TargetDat; // GPS Time String TargetTim; // GPS Status String GPSSt = ""; // ESP32 HardwareSerial HardwareSerial tGPS(2); // LSM9DS1 9DOF Sensor LSM9DS1 imu; #define PRINT_CALCULATED // Earth's magnetic field varies by location. Add or subtract // a declination to get a more accurate heading. Calculate // your's here: http://www.ngdc.noaa.gov/geomag-web/#declination // Declination (degrees) in El Centro, CA #define DECLINATION 10.4 // Gyro float fGyroX; float fGyroY; float fGyroZ; // Accel float fAccelX; float fAccelY; float fAccelZ; // Mag float fMagX; float fMagY; float fMagZ; // Attitude float fRoll; float fPitch; float fHeading; // HC-SR04 Ultrasonic Sensor int iTrig = 15; int iEcho = 14; // Stores the distance measured by the distance sensor float distance = 0; // The number of the Rocker Switch pin int iSwitch = 21; // Variable for reading the button status int SwitchState = 0; // Software Version Information String sver = "28-12"; void loop() { // Date and Time RTC isRTC (); // isGPS isGPS(); // GPS Keyboard isGPSKeyboard(); // Gyro isGyro(); // Accel isAccel(); // Mag isMag(); // Attitude isAttitude(); // HC-SR04 Ultrasonic Sensor isHCSR04(); // Read the state of the Switch value: SwitchState = digitalRead(iSwitch); // Check if the button is pressed. If it is, the SwitchState is HIGH: if (SwitchState == HIGH) { // Bluetooth LE Keyboard isBluetooth(); } // Delay 1 Second delay(1000); }
getBleKeyboard.ino
// Ble Keyboard // Bluetooth // isBluetooth void isBluetooth() { // ESP32 BLE Keyboard if(bleKeyboard.isConnected()) { // Send Size Length sendSize = sKeyboard.length(); // Send Size, charAt for(byte i = 0; i < sendSize+1; i++){ // Write bleKeyboard.write(sKeyboard.charAt(i)); delay(50); } bleKeyboard.write(KEY_RETURN); } }
getGPS.ino
// GPS Receiver // Setup GPS void isSetupGPS() { // Setup GPS //tGPS.begin( 9600 ); // Setup GPS tGPS.begin( 9600 , SERIAL_8N1 , gpsRXPIN , gpsTXPIN ); } // isGPS void isGPS(){ // Receives NEMA data from GPS receiver // This sketch displays information every time a new sentence is correctly encoded while ( tGPS.available() > 0) if (gps.encode( tGPS.read() )) { // GPS Vector Pointer Target displayInfo(); // GPS Date, Time displayDTS(); } if (millis() > 5000 && gps.charsProcessed() < 10) { while(true); } } // GPS Vector Pointer Target void displayInfo(){ // Location if (gps.location.isValid()) { // Latitude TargetLat = gps.location.lat(); // Longitude TargetLon = gps.location.lng(); // GPS Status 2 GPSSt = "Yes"; } else { // GPS Status 0 GPSSt = "No"; TargetLat = 0; TargetLon = 0; } } // GPS Date, Time void displayDTS(){ // Date TargetDat = ""; if (gps.date.isValid()) { // Date // Year TargetDat += String(gps.date.year(), DEC); TargetDat += "/"; // Month TargetDat += String(gps.date.month(), DEC); TargetDat += "/"; // Day TargetDat += String(gps.date.day(), DEC); } // Time TargetTim = ""; if (gps.time.isValid()) { // Time // Hour TargetTim += String(gps.time.hour(), DEC); TargetTim += ":"; // Minute TargetTim += String(gps.time.minute(), DEC); TargetTim += ":"; // Secound TargetTim += String(gps.time.second(), DEC); } } // GPS Keyboard void isGPSKeyboard(){ // GPS Keyboard // bleKeyboard // GPS Vector Pointer Target sKeyboard = sKeyboard + GPSSt + "|" + String(TargetLat) + "|" + String(TargetLon) + "|"; // bleKeyboard // GPS Date, Time sKeyboard = sKeyboard + TargetDat + "|" + TargetTim + "|"; }
getHC-SR04.ino
// HC-SR04 Ultrasonic Sensor // Setup HC-SR04 void isSetupHCSR04() { // The trigger iTrig will output pulses of electricity pinMode(iTrig, OUTPUT); // The echo iEcho will measure the duration of pulses coming back from the distance sensor pinMode(iEcho, INPUT); } // HC-SR04 void isHCSR04() { // Variable to store the distance measured by the sensor distance = isDistance(); sKeyboard = sKeyboard + String(distance) + " cm|*"; } // Distance float isDistance() { // Variable to store the time it takes for a ping to bounce off an object float echoTime; // Variable to store the distance calculated from the echo time float calculatedDistance; // Send out an ultrasonic pulse that's 10ms long digitalWrite(iTrig, HIGH); delayMicroseconds(10); digitalWrite(iTrig, LOW); // Use the pulseIn command to see how long it takes for the // pulse to bounce back to the sensor echoTime = pulseIn(iEcho, HIGH); // Calculate the distance of the object that reflected the pulse // (half the bounce time multiplied by the speed of sound) // cm = 58.0 calculatedDistance = echoTime / 58.0; // Send back the distance that was calculated return calculatedDistance; }
getLSM9DS1.ino
// LSM9DS1 9DOF Sensor // Gyro void isGyro(){ // Update the sensor values whenever new data is available if ( imu.gyroAvailable() ) { // To read from the gyroscope, first call the // readGyro() function. When it exits, it'll update the // gx, gy, and gz variables with the most current data. imu.readGyro(); // If you want to print calculated values, you can use the // calcGyro helper function to convert a raw ADC value to // DPS. Give the function the value that you want to convert. fGyroX = imu.calcGyro(imu.gx); fGyroY = imu.calcGyro(imu.gy); fGyroZ = imu.calcGyro(imu.gz); // bleKeyboard // Gyro sKeyboard = sKeyboard + String(fGyroX) + "|" + String(fGyroY) + "|" + String(fGyroZ) + "|"; } } // Accel void isAccel(){ // Update the sensor values whenever new data is available if ( imu.accelAvailable() ) { // To read from the accelerometer, first call the // readAccel() function. When it exits, it'll update the // ax, ay, and az variables with the most current data. imu.readAccel(); // If you want to print calculated values, you can use the // calcAccel helper function to convert a raw ADC value to // g's. Give the function the value that you want to convert. fAccelX = imu.calcAccel(imu.ax); fAccelY = imu.calcAccel(imu.ay); fAccelZ = imu.calcAccel(imu.az); // bleKeyboard // Accel sKeyboard = sKeyboard + String(fAccelX) + "|" + String(fAccelY) + "|" + String(fAccelZ) + "|"; } } // Mag void isMag(){ // Update the sensor values whenever new data is available if ( imu.magAvailable() ) { // To read from the magnetometer, first call the // readMag() function. When it exits, it'll update the // mx, my, and mz variables with the most current data. imu.readMag(); // If you want to print calculated values, you can use the // calcMag helper function to convert a raw ADC value to // Gauss. Give the function the value that you want to convert. fMagX = imu.calcMag(imu.mx); fMagY = imu.calcMag(imu.my); fMagZ = imu.calcMag(imu.mz); // bleKeyboard // Mag sKeyboard = sKeyboard + String(fMagX) + "|" + String(fMagY) + "|" + String(fMagZ) + "|"; } } // Attitude void isAttitude(){ // Attitude // Roll fRoll = atan2(fAccelY, fAccelZ); // Pitch fPitch = atan2(-fAccelX, sqrt(fAccelY * fAccelY + fAccelZ * fAccelZ)); // Heading if (fMagY == 0) { fHeading = (fMagX < 0) ? PI : 0; } else { fHeading = atan2(fMagX, fMagY); } fHeading -= DECLINATION * PI / 180; if (fHeading > PI) fHeading -= (2 * PI); else if (fHeading < -PI) fHeading += (2 * PI); // Convert everything from radians to degrees: fHeading *= 180.0 / PI; fPitch *= 180.0 / PI; fRoll *= 180.0 / PI; // bleKeyboard // Attitude sKeyboard = sKeyboard + String(fHeading) + "|" + String(fPitch) + "|" + String(fRoll) + "|"; }
getRTC.ino
// Date & Time // DS3231 Precision RTC void isSetupRTC() { // DS3231 Precision RTC if (! rtc.begin()) { //Serial.println("Couldn't find RTC"); //Serial.flush(); while (1) delay(10); } if (rtc.lostPower()) { //Serial.println("RTC lost power, let's set the time!"); // When time needs to be set on a new device, or after a power loss, the // following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: //rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0)); } } // Date and Time RTC void isRTC () { // Date and Time dateRTC = ""; timeRTC = ""; DateTime now = rtc.now(); // Date dateRTC = now.year(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.month(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.day(), DEC; // Time timeRTC = now.hour(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.minute(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.second(), DEC; // bleKeyboard sKeyboard = "SEN|" + sver + "|" + String(dateRTC) + "|" + String(timeRTC) + "|"; }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // Bluetooth LE keyboard bleKeyboard.begin(); // Wire - Inialize I2C Hardware Wire.begin(); // Give display time to power on delay(100); // Date & Time RTC // DS3231 Precision RTC isSetupRTC(); // Give display time to power on delay(100); // GPS Receiver // Setup GPS isSetupGPS(); // LSM9DS1 9DOF Sensor imu.begin(); // Setup HC-SR04 isSetupHCSR04(); // Initialize the Switch pin as an input pinMode(iSwitch, INPUT); // Initialize digital pin LED_BUILTIN as an output pinMode(LED_BUILTIN, OUTPUT); // Turn the LED on HIGH digitalWrite(LED_BUILTIN, HIGH); // Delay 5 Second delay( 5000 ); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Teacher, Instructor, E-Mentor, R&D and Consulting
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi, Arm, Silicon Labs, Espressif, Etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Automation
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- Artificial Intelligence (AI)
- RTOS
- eHealth Sensors, Biosensor, and Biometric
- Research & Development (R & D)
- Consulting
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #28 – Sensors – GPS Receiver GP-20U7 – Mk10
——
#DonLucElectronics #DonLuc #Sensors #GPSReceiver #Adafruit #SparkFun #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
GPS Receiver – GP-20U7
The GP-20U7 is a compact GPS receiver with a built-in high performances All-In-One GPS chipset. The GP-20U7 accurately provides position, velocity, and time readings as well possessing high sensitivity and tracking capabilities. Thanks to the low power consumption this receiver requires, the GP-20U7 is ideal for portable applications such as tablet PCs, smart phones, and other devices requiring positioning capability. This 56-Channel GPS module, that supports a standard NMEA-0183 and uBlox 7 protocol, has low power consumption of 40mA@3.3V (max), an antenna on board, and -162dBm tracking sensitivity. With 56 channels in search mode and 22 channels “All-In-View” tracking, the GP-20U7 is quite the work horse for its size.
DL2309Mk04
1 x Fio v3 – ATmega32U4
1 x DS3231 Precision RTC FeatherWing
1 x GPS Receiver – GP-20U7 (56 Channel)
1 x Rocker Switch – SPST
1 x Resistor 10K Ohm
1 x CR1220 3V Lithium Coin Cell Battery
1 x SparkFun Cerberus USB Cable
Fio v3 – ATmega32U4
LED – LED_BUILTIN
SDA – Digital 2
SCL – Digital 3
SW1 – Digital 6
GPT – Digital 7
GPR – Digital 9
VIN – +3.3V
GND – GND
——
DL2309Mk04p.ino
/****** Don Luc Electronics © ****** Software Version Information Project #28 - Sensors - GPS Receiver GP-20U7 - Mk10 28-10 DL2309Mk04p.ino 1 x Fio v3 - ATmega32U4 1 x DS3231 Precision RTC FeatherWing 1 x GPS Receiver - GP-20U7 (56 Channel) 1 x Rocker Switch - SPST 1 x Resistor 10K Ohm 1 x CR1220 3V Lithium Coin Cell Battery 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // DS3231 Precision RTC #include <RTClib.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Keyboard #include <Keyboard.h> // GPS Receiver #include <TinyGPS++.h> // Software Serial #include <SoftwareSerial.h> // Keyboard String sKeyboard = ""; // DS3231 Precision RTC RTC_DS3231 rtc; String dateRTC = ""; String timeRTC = ""; // GPS Receiver #define gpsRXPIN 9 // This one is unused and doesnt have a conection #define gpsTXPIN 7 // The TinyGPS++ object TinyGPSPlus gps; // Latitude float TargetLat; // Longitude float TargetLon; // GPS Date, Time // GPS Date String TargetDat; // GPS Time String TargetTim; // GPS Status String GPSSt = ""; // The serial connection to the GPS device SoftwareSerial tGPS(gpsRXPIN, gpsTXPIN); // The number of the Rocker Switch pin int iSwitch = 6; // Variable for reading the button status int SwitchState = 0; // Software Version Information String sver = "28-10"; void loop() { // Date and Time RTC isRTC (); // isGPS isGPS(); // GPS Keyboard isGPSKeyboard(); // Read the state of the Switch value: SwitchState = digitalRead(iSwitch); // Check if the button is pressed. If it is, the SwitchState is HIGH: if (SwitchState == HIGH) { Keyboard.println(sKeyboard); } // Delay 1 Second delay(1000); }
getGPS.ino
// GPS Receiver // Setup GPS void setupGPS() { // Setup GPS tGPS.begin( 9600 ); } // isGPS void isGPS(){ // Receives NEMA data from GPS receiver // This sketch displays information every time a new sentence is correctly encoded while ( tGPS.available() > 0) if (gps.encode( tGPS.read() )) { // GPS Vector Pointer Target displayInfo(); // GPS Date, Time displayDTS(); } if (millis() > 5000 && gps.charsProcessed() < 10) { while(true); } } // GPS Vector Pointer Target void displayInfo(){ // Location if (gps.location.isValid()) { // Latitude TargetLat = gps.location.lat(); // Longitude TargetLon = gps.location.lng(); // GPS Status 2 GPSSt = "Yes"; } else { // GPS Status 0 GPSSt = "No"; TargetLat = 0; TargetLon = 0; } } // GPS Date, Time void displayDTS(){ // Date TargetDat = ""; if (gps.date.isValid()) { // Date // Year TargetDat += String(gps.date.year(), DEC); TargetDat += "/"; // Month TargetDat += String(gps.date.month(), DEC); TargetDat += "/"; // Day TargetDat += String(gps.date.day(), DEC); } // Time TargetTim = ""; if (gps.time.isValid()) { // Time // Hour TargetTim += String(gps.time.hour(), DEC); TargetTim += ":"; // Minute TargetTim += String(gps.time.minute(), DEC); TargetTim += ":"; // Secound TargetTim += String(gps.time.second(), DEC); } } // GPS Keyboard void isGPSKeyboard(){ // GPS Keyboard // Keyboard // GPS Vector Pointer Target sKeyboard = sKeyboard + GPSSt + "|" + String(TargetLat) + "|" + String(TargetLon) + "|"; // Keyboard // GPS Date, Time sKeyboard = sKeyboard + TargetDat + "|" + TargetTim + "|*"; }
getRTC.ino
// Date & Time // DS3231 Precision RTC void setupRTC() { // DS3231 Precision RTC if (! rtc.begin()) { //Serial.println("Couldn't find RTC"); //Serial.flush(); while (1) delay(10); } if (rtc.lostPower()) { //Serial.println("RTC lost power, let's set the time!"); // When time needs to be set on a new device, or after a power loss, the // following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: //rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0)); } } // Date and Time RTC void isRTC () { // Date and Time dateRTC = ""; timeRTC = ""; DateTime now = rtc.now(); // Date dateRTC = now.year(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.month(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.day(), DEC; // Time timeRTC = now.hour(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.minute(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.second(), DEC; // Keyboard sKeyboard = "SEN|" + sver + "|" + String(dateRTC) + "|" + String(timeRTC) + "|"; }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // Wire - Inialize I2C Hardware Wire.begin(); // Give display time to power on delay(100); // Date & Time RTC // DS3231 Precision RTC setupRTC(); // Initialize control over the keyboard: Keyboard.begin(); // Give display time to power on delay(100); // GPS Receiver // Setup GPS setupGPS(); // Initialize the Switch pin as an input pinMode(iSwitch, INPUT); // Initialize digital pin LED_BUILTIN as an output pinMode(LED_BUILTIN, OUTPUT); // Turn the LED on HIGH digitalWrite(LED_BUILTIN, HIGH); // Delay 5 Second delay( 5000 ); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- Programming Language
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #28 – Sensors – SparkFun Environmental Combo CCS811/BME280 – Mk09
——
#DonLucElectronics #DonLuc #Sensors #CCS811 #BME280 #TSOP85 #TMP102 #LineSensor #AlcoholGasSensor #MinIMU9 #Pololu #Adafruit #SparkFun #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
SparkFun Environmental Combo – CCS811/BME280
The SparkFun CCS811/BME280 Environmental Combo Breakout takes care of all your atmospheric-quality sensing needs with the popular CCS811 and BME280 ICs. This unique breakout provides a variety of environmental data, including barometric pressure, humidity, temperature, TVOCs and equivalent eCO2 levels.
The CCS811 is an exceedingly popular sensor, providing readings for equivalent eCO2 in the parts per million (PPM) and total volatile organic compounds in the parts per billion (PPB). The CCS811 also has a feature that allows it to fine-tune its readings if it has access to the current humidity and temperature. Luckily for us, the BME280 provides humidity, temperature and barometric pressure. This allows the sensors to work together to give us more accurate readings than they’d be able to provide on their own. We also made it easy to interface with them via I2C.
DL2309Mk03
1 x Adafruit METRO M0 Express
1 x DS3231 Precision RTC FeatherWing
1 x Pololu MinIMU-9 v5 Gyro, Accelerometer, and Compass
1 x Pololu Carrier for MQ Gas Sensors
1 x Alcohol Gas Sensor – MQ-3
1 x SparkFun Line Sensor – QRE1113
1 x SparkFun Digital Temperature Sensor – TMP102
1 x SparkFun IR Receiver – TSOP85
1 x SparkFun Environmental Combo – CCS811/BME280
1 x LED Red
1 x ProtoScrewShield
1 x Rocker Switch – SPST
2 x Resistor 10K Ohm
1 x CR1220 3V Lithium Coin Cell Battery
1 x SparkFun Cerberus USB Cable
Adafruit METRO M0 Express
LED – LED_BUILTIN
SDA – Digital 20
SCL – Digital 21
IRR – Digital 11
LER – Digital 3
SW1 – Digital 2
MQ3 – Analog 0
LSB – Analog 1
ALE = Analog 3
VIN – +3.3V
VIN – +5V
GND – GND
——
DL2309Mk03p.ino
/****** Don Luc Electronics © ****** Software Version Information Project #28 - Sensors - SparkFun Environmental Combo CCS811/BME280 - Mk09 28-09 DL2309Mk03p.ino 1 x Adafruit METRO M0 Express 1 x DS3231 Precision RTC FeatherWing 1 x Pololu MinIMU-9 v5 Gyro, Accelerometer, and Compass 1 x Pololu Carrier for MQ Gas Sensors 1 x Alcohol Gas Sensor - MQ-3 1 x SparkFun Line Sensor - QRE1113 1 x SparkFun Digital Temperature Sensor - TMP102 1 x SparkFun IR Receiver - TSOP85 1 x SparkFun Environmental Combo - CCS811/BME280 1 x LED Red 1 x ProtoScrewShield 1 x Rocker Switch - SPST 2 x Resistor 10K Ohm 1 x CR1220 3V Lithium Coin Cell Battery 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // DS3231 Precision RTC #include <RTClib.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Keyboard #include <Keyboard.h> // Includes and variables for IMU integration // STMicroelectronics LSM6DS33 Gyroscope and Accelerometer #include <LSM6.h> // STMicroelectronics LIS3MDL Magnetometer #include <LIS3MDL.h> // SparkFun Digital Temperature Sensor TMP102 #include <SparkFunTMP102.h> // SparkFun IR Receiver - TSOP85 #include <IRremote.h> // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude #include <SparkFunBME280.h> // SparkFun CCS811 - eCO2 & tVOC #include <SparkFunCCS811.h> // Keyboard String sKeyboard = ""; // DS3231 Precision RTC RTC_DS3231 rtc; String dateRTC = ""; String timeRTC = ""; // Pololu 9DoF IMU // STMicroelectronics LSM6DS33 Gyroscope and Accelerometer LSM6 imu; // Accelerometer and Gyroscopes // Accelerometer int imuAX; int imuAY; int imuAZ; // Gyroscopes int imuGX; int imuGY; int imuGZ; // STMicroelectronics LIS3MDL Magnetometer LIS3MDL mag; // Magnetometer int magX; int magY; int magZ; // Gas Sensors MQ // Alcohol Gas Sensor - MQ-3 int iMQ3 = A0; int iMQ3Raw = 0; int iMQ3ppm = 0; // SparkFun Line Sensor - QRE1113 (Analog) int iLine = A1; int iLineSensor = 0; // SparkFun Digital Temperature Sensor TMP102 const int ALERT_PIN = A3; TMP102 sensor0; float temperature; boolean alertPinState; boolean alertRegisterState; // SparkFun IR Receiver - TSOP85 int RECV_PIN = 11; IRrecv irrecv(RECV_PIN); decode_results results; String IRValue = ""; int iLEDRed = 3; // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude BME280 myBME280; float BMEtempC = 0; float BMEhumid = 0; float BMEpressure = 0; float BMEaltitudeM = 0; // SparkFun CCS811 - eCO2 & tVOC // Default I2C Address #define CCS811_ADDR 0x5B CCS811 myCCS811(CCS811_ADDR); float CCS811CO2 = 0; float CCS811TVOC = 0; // The number of the Rocker Switch pin int iSwitch = 2; // Variable for reading the button status int SwitchState = 0; // Software Version Information String sver = "28-09"; void loop() { // Date and Time RTC isRTC (); // Pololu Accelerometer and Gyroscopes isIMU(); // Pololu Magnetometer isMag(); // Gas Sensors MQ isGasSensor(); // SparkFun Line Sensor isLineSensor(); // SparkFun Temperature TMP102 isTMP102(); // SparkFun IR Receiver - TSOP85 isIR(); // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude isBME280(); // SparkFun CCS811 - eCO2 & tVOC isCCS811(); // Read the state of the Switch value: SwitchState = digitalRead(iSwitch); // Check if the button is pressed. If it is, the SwitchState is HIGH: if (SwitchState == HIGH) { Keyboard.println(sKeyboard); } // Delay 1 Second delay(1000); }
getAccelGyro.ino
// Accelerometer and Gyroscopes // Setup IMU void setupIMU() { // Setup IMU imu.init(); // Default imu.enableDefault(); } // Accelerometer and Gyroscopes void isIMU() { // Accelerometer and Gyroscopes imu.read(); // Accelerometer x, y, z imuAX = imu.a.x; imuAY = imu.a.y; imuAZ = imu.a.z; // Gyroscopes x, y, z imuGX = imu.g.x; imuGY = imu.g.y; imuGZ = imu.g.z; // Keyboard sKeyboard = sKeyboard + String(imuAX) + "|" + String(imuAY) + "|" + String(imuAZ) + "|"; sKeyboard = sKeyboard + String(imuGX) + "|" + String(imuGY) + "|" + String(imuGZ) + "|"; }
getBME280.ino
// SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude // isBME280 - Temperature, Humidity, Barometric Pressure, and Altitude void isBME280(){ // Temperature Celsius BMEtempC = myBME280.readTempC(); // Humidity BMEhumid = myBME280.readFloatHumidity(); // Barometric Pressure BMEpressure = myBME280.readFloatPressure(); // Altitude Meters BMEaltitudeM = (myBME280.readFloatAltitudeMeters(), 2); // Keyboard sKeyboard = sKeyboard + String(BMEtempC) + "|" + String(BMEhumid) + "|" + String(BMEpressure) + "|" + String(BMEaltitudeM) + "|"; }
getCCS811.ino
// CCS811 - eCO2 & tVOC // isCCS811 - eCO2 & tVOC void isCCS811(){ // This sends the temperature & humidity data to the CCS811 myCCS811.setEnvironmentalData(BMEhumid, BMEtempC); // Calling this function updates the global tVOC and eCO2 variables myCCS811.readAlgorithmResults(); // eCO2 Concentration CCS811CO2 = myCCS811.getCO2(); // tVOC Concentration CCS811TVOC = myCCS811.getTVOC(); // Keyboard sKeyboard = sKeyboard + String(CCS811CO2) + "|" + String(CCS811TVOC) + "|*"; }
getGasSensorMQ.ino
// Gas Sensors MQ // Gas Sensor void isGasSensor() { // Read in analog value from each gas sensors // Alcohol Gas Sensor - MQ-3 iMQ3ppm = isMQ3( iMQ3Raw ); // Keyboard sKeyboard = sKeyboard + String(iMQ3ppm) + "|"; } // Alcohol Gas Sensor - MQ-3 int isMQ3(double rawValue) { double RvRo = rawValue; // % BAC = breath mg/L * 0.21 double bac = RvRo * 0.21; return bac; }
getIMUMagnetometer.ino
// IMU Magnetometer // Setup Magnetometer void setupMag() { // Setup Magnetometer mag.init(); // Default mag.enableDefault(); } // Magnetometer void isMag() { // Magnetometer mag.read(); // Magnetometer x, y, z magX = mag.m.x; magY = mag.m.y; magZ = mag.m.z; // Keyboard sKeyboard = sKeyboard + String(magX) + "|" + String(magY) + "|" + String(magZ) + "|"; }
getIRRemote.ino
// SparkFun IR Receiver - TSOP85 // Setup void isSetupIR(){ // Initialize digital pin LED Red as an output pinMode(iLEDRed, OUTPUT); // Start the receiver irrecv.enableIRIn(); } // void isIR(){ if (irrecv.decode(&results)) { // LED Red HIGH digitalWrite(iLEDRed, HIGH); //Serial.print("IR RECV Code = 0x "); //Serial.println(results.value, HEX); IRValue = "0x "; IRValue = IRValue + String(results.value, HEX); // LED Red LOW digitalWrite(iLEDRed, LOW); // IR Resume irrecv.resume(); } else { IRValue = "0"; } // Keyboard sKeyboard = sKeyboard + String(IRValue) + "|"; }
getLineSensor.ino
// Line Sensor // isLine Sensor void isLineSensor(){ // Line Sensor iLineSensor = analogRead(iLine); // Keyboard sKeyboard = sKeyboard + String(iLineSensor) + "|"; }
getRTC.ino
// Date & Time // DS3231 Precision RTC void setupRTC() { // DS3231 Precision RTC if (! rtc.begin()) { //Serial.println("Couldn't find RTC"); //Serial.flush(); while (1) delay(10); } if (rtc.lostPower()) { //Serial.println("RTC lost power, let's set the time!"); // When time needs to be set on a new device, or after a power loss, the // following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: //rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0)); } } // Date and Time RTC void isRTC () { // Date and Time dateRTC = ""; timeRTC = ""; DateTime now = rtc.now(); // Date dateRTC = now.year(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.month(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.day(), DEC; // Time timeRTC = now.hour(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.minute(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.second(), DEC; // Keyboard sKeyboard = "SEN|" + sver + "|" + String(dateRTC) + "|" + String(timeRTC) + "|"; }
getTempTMP102.ino
// SparkFun Digital Temperature Sensor TMP102 // Setup TMP102 void isSetupTMP102(){ // Declare alertPin as an input pinMode(ALERT_PIN,INPUT); // Begin //It will return true on success or false on failure to communicate if(!sensor0.begin()) { while(1); } // set the Conversion Rate //0-3: 0:0.25Hz, 1:1Hz, 2:4Hz, 3:8Hz sensor0.setConversionRate(2); //set Extended Mode. //0:12-bit Temperature(-55C to +128C) 1:13-bit Temperature(-55C to +150C) sensor0.setExtendedMode(0); // Set T_HIGH, the upper limit to trigger the alert on // Set T_HIGH in C sensor0.setHighTempC(29.4); // Set T_LOW, the lower limit to shut turn off the alert // set T_LOW in C sensor0.setLowTempC(27.67); } // is TMP102 void isTMP102(){ // Turn sensor on to start temperature measurement. // Current consumtion typically ~10uA. sensor0.wakeup(); // read temperature data C temperature = sensor0.readTempC(); // Check for Alert // Read the Alert from pin alertPinState = digitalRead(ALERT_PIN); // Read the Alert from register alertRegisterState = sensor0.alert(); // Place sensor in sleep mode to save power. // Current consumtion typically <0.5uA. sensor0.sleep(); // Keyboard sKeyboard = sKeyboard + String(temperature) + "|" + String(alertPinState) + "|" + String(alertRegisterState) + "|"; }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // Wire - Inialize I2C Hardware Wire.begin(); // Give display time to power on delay(100); // Date & Time RTC // DS3231 Precision RTC setupRTC(); // Initialize control over the keyboard: Keyboard.begin(); // Pololu Setup IMU setupIMU(); // Pololu Setup Magnetometer setupMag(); // Setup TMP102 isSetupTMP102(); // SetupTSOP85 isSetupIR(); // SparkFun BME280 - Temperature, Humidity, Barometric Pressure, and Altitude myBME280.begin(); // CCS811 - eCO2 & tVOC myCCS811.begin(); // Initialize the Switch pin as an input pinMode(iSwitch, INPUT); // Initialize digital pin LED_BUILTIN as an output pinMode(LED_BUILTIN, OUTPUT); // Turn the LED on HIGH digitalWrite(LED_BUILTIN, HIGH); // Delay 5 Second delay( 5000 ); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- Programming Language
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc
Project #28 – Sensors – SparkFun IR Receiver TSOP85 – Mk08
——
#DonLucElectronics #DonLuc #Sensors #TMP102 #LineSensor #AlcoholGasSensor #MinIMU9 #Pololu #Adafruit #SparkFun #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant
——
——
——
——
SparkFun IR Receiver – TSOP85
This is a very small infrared receiver based on the TSOP85 receiver from Vishay. This receiver has all the filtering and 38kHz demodulation built into the unit. Simply point a IR remote at the receiver, hit a button, and you’ll see a stream of 1s and 0s out of the data pin.
DL2309Mk02
1 x Adafruit METRO M0 Express
1 x DS3231 Precision RTC FeatherWing
1 x Pololu MinIMU-9 v5 Gyro, Accelerometer, and Compass
1 x Pololu Carrier for MQ Gas Sensors
1 x Alcohol Gas Sensor – MQ-3
1 x SparkFun Line Sensor – QRE1113
1 x SparkFun Digital Temperature Sensor – TMP102
1 x SparkFun IR Receiver – TSOP85
1 x LED Red
1 x ProtoScrewShield
1 x Rocker Switch – SPST
2 x Resistor 10K Ohm
1 x CR1220 3V Lithium Coin Cell Battery
1 x SparkFun Cerberus USB Cable
Adafruit METRO M0 Express
LED – LED_BUILTIN
SDA – Digital 20
SCL – Digital 21
IRR – Digital 11
LER – Digital 3
SW1 – Digital 2
MQ3 – Analog 0
LSB – Analog 1
ALE = Analog 3
VIN – +3.3V
VIN – +5V
GND – GND
——
DL2309Mk02p.ino
/****** Don Luc Electronics © ****** Software Version Information Project #28 - Sensors - SparkFun IR Receiver TSOP85 - Mk08 28-08 DL2309Mk02p.ino 1 x Adafruit METRO M0 Express 1 x DS3231 Precision RTC FeatherWing 1 x Pololu MinIMU-9 v5 Gyro, Accelerometer, and Compass 1 x Pololu Carrier for MQ Gas Sensors 1 x Alcohol Gas Sensor - MQ-3 1 x SparkFun Line Sensor - QRE1113 1 x SparkFun Digital Temperature Sensor - TMP102 1 x SparkFun IR Receiver - TSOP85 1 x LED Red 1 x ProtoScrewShield 1 x Rocker Switch - SPST 2 x Resistor 10K Ohm 1 x CR1220 3V Lithium Coin Cell Battery 1 x SparkFun Cerberus USB Cable */ // Include the Library Code // DS3231 Precision RTC #include <RTClib.h> // Two Wire Interface (TWI/I2C) #include <Wire.h> // Keyboard #include <Keyboard.h> // Includes and variables for IMU integration // STMicroelectronics LSM6DS33 Gyroscope and Accelerometer #include <LSM6.h> // STMicroelectronics LIS3MDL Magnetometer #include <LIS3MDL.h> // SparkFun Digital Temperature Sensor TMP102 #include <SparkFunTMP102.h> // SparkFun IR Receiver - TSOP85 #include <IRremote.h> // Keyboard String sKeyboard = ""; // DS3231 Precision RTC RTC_DS3231 rtc; String dateRTC = ""; String timeRTC = ""; // Pololu 9DoF IMU // STMicroelectronics LSM6DS33 Gyroscope and Accelerometer LSM6 imu; // Accelerometer and Gyroscopes // Accelerometer int imuAX; int imuAY; int imuAZ; // Gyroscopes int imuGX; int imuGY; int imuGZ; // STMicroelectronics LIS3MDL Magnetometer LIS3MDL mag; // Magnetometer int magX; int magY; int magZ; // Gas Sensors MQ // Alcohol Gas Sensor - MQ-3 int iMQ3 = A0; int iMQ3Raw = 0; int iMQ3ppm = 0; // SparkFun Line Sensor - QRE1113 (Analog) int iLine = A1; int iLineSensor = 0; // SparkFun Digital Temperature Sensor TMP102 const int ALERT_PIN = A3; TMP102 sensor0; float temperature; boolean alertPinState; boolean alertRegisterState; // SparkFun IR Receiver - TSOP85 int RECV_PIN = 11; IRrecv irrecv(RECV_PIN); decode_results results; String IRValue = ""; int iLEDRed = 3; // The number of the Rocker Switch pin int iSwitch = 2; // Variable for reading the button status int SwitchState = 0; // Software Version Information String sver = "28-08"; void loop() { // Date and Time RTC isRTC (); // Pololu Accelerometer and Gyroscopes isIMU(); // Pololu Magnetometer isMag(); // Gas Sensors MQ isGasSensor(); // SparkFun Line Sensor isLineSensor(); // SparkFun Temperature TMP102 isTMP102(); // SparkFun IR Receiver - TSOP85 isIR(); // Read the state of the Switch value: SwitchState = digitalRead(iSwitch); // Check if the button is pressed. If it is, the SwitchState is HIGH: if (SwitchState == HIGH) { Keyboard.println(sKeyboard); } // Delay 1 Second delay(1000); }
getAccelGyro.ino
// Accelerometer and Gyroscopes // Setup IMU void setupIMU() { // Setup IMU imu.init(); // Default imu.enableDefault(); } // Accelerometer and Gyroscopes void isIMU() { // Accelerometer and Gyroscopes imu.read(); // Accelerometer x, y, z imuAX = imu.a.x; imuAY = imu.a.y; imuAZ = imu.a.z; // Gyroscopes x, y, z imuGX = imu.g.x; imuGY = imu.g.y; imuGZ = imu.g.z; // Keyboard sKeyboard = sKeyboard + String(imuAX) + "|" + String(imuAY) + "|" + String(imuAZ) + "|"; sKeyboard = sKeyboard + String(imuGX) + "|" + String(imuGY) + "|" + String(imuGZ) + "|"; }
getGasSensorMQ.ino
// Gas Sensors MQ // Gas Sensor void isGasSensor() { // Read in analog value from each gas sensors // Alcohol Gas Sensor - MQ-3 iMQ3ppm = isMQ3( iMQ3Raw ); // Keyboard sKeyboard = sKeyboard + String(iMQ3ppm) + "|"; } // Alcohol Gas Sensor - MQ-3 int isMQ3(double rawValue) { double RvRo = rawValue; // % BAC = breath mg/L * 0.21 double bac = RvRo * 0.21; return bac; }
getIMUMagnetometer.ino
// IMU Magnetometer // Setup Magnetometer void setupMag() { // Setup Magnetometer mag.init(); // Default mag.enableDefault(); } // Magnetometer void isMag() { // Magnetometer mag.read(); // Magnetometer x, y, z magX = mag.m.x; magY = mag.m.y; magZ = mag.m.z; // Keyboard sKeyboard = sKeyboard + String(magX) + "|" + String(magY) + "|" + String(magZ) + "|"; }
getIRRemote.ino
// SparkFun IR Receiver - TSOP85 // Setup void isSetupIR(){ // Initialize digital pin LED Red as an output pinMode(iLEDRed, OUTPUT); // Start the receiver irrecv.enableIRIn(); } // void isIR(){ if (irrecv.decode(&results)) { // LED Red HIGH digitalWrite(iLEDRed, HIGH); //Serial.print("IR RECV Code = 0x "); //Serial.println(results.value, HEX); IRValue = "0x "; IRValue = IRValue + String(results.value, HEX); // LED Red LOW digitalWrite(iLEDRed, LOW); // IR Resume irrecv.resume(); } else { IRValue = "0"; } // Keyboard sKeyboard = sKeyboard + String(IRValue) + "|*"; }
getLineSensor.ino
// Line Sensor // isLine Sensor void isLineSensor(){ // Line Sensor iLineSensor = analogRead(iLine); // Keyboard sKeyboard = sKeyboard + String(iLineSensor) + "|"; }
getRTC.ino
// Date & Time // DS3231 Precision RTC void setupRTC() { // DS3231 Precision RTC if (! rtc.begin()) { //Serial.println("Couldn't find RTC"); //Serial.flush(); while (1) delay(10); } if (rtc.lostPower()) { //Serial.println("RTC lost power, let's set the time!"); // When time needs to be set on a new device, or after a power loss, the // following line sets the RTC to the date & time this sketch was compiled rtc.adjust(DateTime(F(__DATE__), F(__TIME__))); // This line sets the RTC with an explicit date & time, for example to set // January 21, 2014 at 3am you would call: //rtc.adjust(DateTime(2023, 8, 10, 11, 0, 0)); } } // Date and Time RTC void isRTC () { // Date and Time dateRTC = ""; timeRTC = ""; DateTime now = rtc.now(); // Date dateRTC = now.year(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.month(), DEC; dateRTC = dateRTC + "/"; dateRTC = dateRTC + now.day(), DEC; // Time timeRTC = now.hour(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.minute(), DEC; timeRTC = timeRTC + ":"; timeRTC = timeRTC + now.second(), DEC; // Keyboard sKeyboard = "SEN|" + sver + "|" + String(dateRTC) + "|" + String(timeRTC) + "|"; }
getTempTMP102.ino
// SparkFun Digital Temperature Sensor TMP102 // Setup TMP102 void isSetupTMP102(){ // Declare alertPin as an input pinMode(ALERT_PIN,INPUT); // Begin //It will return true on success or false on failure to communicate if(!sensor0.begin()) { while(1); } // set the Conversion Rate //0-3: 0:0.25Hz, 1:1Hz, 2:4Hz, 3:8Hz sensor0.setConversionRate(2); //set Extended Mode. //0:12-bit Temperature(-55C to +128C) 1:13-bit Temperature(-55C to +150C) sensor0.setExtendedMode(0); // Set T_HIGH, the upper limit to trigger the alert on // Set T_HIGH in C sensor0.setHighTempC(29.4); // Set T_LOW, the lower limit to shut turn off the alert // set T_LOW in C sensor0.setLowTempC(27.67); } // is TMP102 void isTMP102(){ // Turn sensor on to start temperature measurement. // Current consumtion typically ~10uA. sensor0.wakeup(); // read temperature data C temperature = sensor0.readTempC(); // Check for Alert // Read the Alert from pin alertPinState = digitalRead(ALERT_PIN); // Read the Alert from register alertRegisterState = sensor0.alert(); // Place sensor in sleep mode to save power. // Current consumtion typically <0.5uA. sensor0.sleep(); // Keyboard sKeyboard = sKeyboard + String(temperature) + "|" + String(alertPinState) + "|" + String(alertRegisterState) + "|"; }
setup.ino
// Setup void setup() { // Give display time to power on delay(100); // Wire - Inialize I2C Hardware Wire.begin(); // Give display time to power on delay(100); // Date & Time RTC // DS3231 Precision RTC setupRTC(); // Initialize control over the keyboard: Keyboard.begin(); // Pololu Setup IMU setupIMU(); // Pololu Setup Magnetometer setupMag(); // Setup TMP102 isSetupTMP102(); // SetupTSOP85 isSetupIR(); // Initialize the Switch pin as an input pinMode(iSwitch, INPUT); // Initialize digital pin LED_BUILTIN as an output pinMode(LED_BUILTIN, OUTPUT); // Turn the LED on HIGH digitalWrite(LED_BUILTIN, HIGH); // Delay 5 Second delay( 5000 ); }
——
People can contact us: https://www.donluc.com/?page_id=1927
Technology Experience
- Programming Language
- Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
- IoT
- Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
- Robotics
- Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
- Unmanned Vehicles Terrestrial and Marine
- Machine Learning
- RTOS
- Research & Development (R & D)
Instructor, E-Mentor, STEAM, and Arts-Based Training
- Programming Language
- IoT
- PIC Microcontrollers
- Arduino
- Raspberry Pi
- Espressif
- Robotics
Follow Us
Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/
Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Don Luc