Arduino
Arduino
Project #5: Lamps – Mk01
DonLuc1804Mk02.ino
// ***** Don Luc ***** // Software Version Information // 1.01 // DonLuc1804Mk02 1.01 // Lamps #include <Adafruit_NeoPixel.h> // Which pin on the Arduino is connected to the NeoPixels // Pin connected => 6 #define PIN 6 // How many NeoPixels are attached to the Arduino // NUMPIXELS => 4 #define NUMPIXELS 4 Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800); // Panel Mount 1K potentiometer Bright // Bright => A0 const int sensorBright = A0; int sBright = 0; int brightVal = 0; // the sensor value int brightMin = 0; // minimum sensor value int brightMax = 0; // maximum sensor value // Panel Mount 1K potentiometer // Delay => A1 const int sensorDelay = A1; long delayVal = 0; // Rotary Switch - 10 Position // Number => A2 (0 => 9) const int sensorNumber = A2; // Panel Mount 1K potentiometer // Red - Led const int sensorRed = 9; int red = 0; int redMin = 0; int redMax = 0; // Panel Mount 1K potentiometer // Green - Led const int sensorGreen = 8; int green = 0; int greenMin = 0; int greenMax = 0; // Panel Mount 1K potentiometer // Blue - Led const int sensorBlue = 7; int blue = 0; int blueMin = 0; int blueMax = 0; // variables: //int x = 0; int y = 0; int z = 0; void loop() { number(); }
bright.ino
void bright(){ switch (sBright) { case 1: brightVal = 255; break; default: // read the sensor: brightVal = analogRead(sensorBright); // apply the calibration to the sensor reading brightVal = map(brightVal, brightMin, brightMax, 0, 255); // in case the sensor value is outside the range seen during calibration brightVal = constrain(brightVal, 0, 255); break; } }
iled.ino
void iled() { // red red = analogRead(sensorRed); // apply the calibration to the sensor reading red red = map(red, redMin, redMax, 0, 255); // in case the sensor value is outside the range seen during calibration red = constrain(red, 0, 255); // green green = analogRead(sensorGreen); // apply the calibration to the sensor reading red green = map(green, greenMin, greenMax, 0, 255); // in case the sensor value is outside the range seen during calibration green = constrain(green, 0, 255); // blue blue = analogRead(sensorBlue); // apply the calibration to the sensor reading red blue = map(blue, blueMin, blueMax, 0, 255); // in case the sensor value is outside the range seen during calibration blue = constrain(blue, 0, 255); }
neopix.ino
void neopix() { for(int i=0; i<NUMPIXELS; i++){ // bright bright(); pixels.setBrightness( brightVal ); // pixels.Color takes RGB values, from 0,0,0 up to 255,255,255 pixels.setPixelColor(i, pixels.Color(red,green,blue)); // show pixels.show(); // This sends the updated pixel color to the hardware. // delay delay(50); // Delay for a period of time (in milliseconds). } }
neopixt.ino
void neopixt() { for(int i=4; i<NUMPIXELS; i--){ // bright bright(); pixels.setBrightness( brightVal ); // pixels.Color takes RGB values, from 0,0,0 up to 255,255,255 pixels.setPixelColor(i, pixels.Color(red,green,blue)); // show pixels.show(); // This sends the updated pixel color to the hardware. // delay delay(50); // Delay for a period of time (in milliseconds). } }
number.ino
void number(){ z = analogRead(sensorNumber); y = (z / 127); sBright = 20000; // range value: switch (y) { case 0: // Led iled(); // neopix neopix(); // delay delayVal = (0); break; case 1: // Led iled(); // neopix neopix(); // delay sdelay(); break; case 2: // Led iled(); // neopixt neopixt(); // delay sdelay(); break; case 3: // White red = 255; green = 255; blue = 255; // neopix neopix(); // delay delayVal = (0); break; case 4: // Green red = 0; green = 255; blue = 0; // neopix neopix(); // delay delayVal = (0); break; case 5: // Red red = 255; green = 0; blue = 0; // neopix neopix(); // delay delayVal = (0); break; case 6: // White red = 255; green = 255; blue = 255; // neopix neopix(); // delay sdelay(); break; case 7: // Green red = 0; green = 255; blue = 0; // neopix neopix(); // delay sdelay(); break; case 8: // Red red = 255; green = 0; blue = 0; // neopix neopix(); // delay sdelay(); break; case 9: break; } }
sdelay.ino
void sdelay() { delayVal = analogRead(sensorDelay); delayVal = (250 * delayVal); }
setup.ino
void setup() { pixels.begin(); // This initializes the NeoPixel library. }
Don Luc
Project #1 – The AcceleroSynth – Mk12
ArduiNIX
ArduiNIX: 8 x Nixie Tubes
The ArduiNIX shield is a user programmable platform for driving multiplexed Nixie tube or other high voltage displays.
The ArduiNIX shield uses digital data pins 2,3,4,5,6,7,8,9,10,11,12,13 on the Arduino.
AREF, IOREF, TX(digital 1), RX(digital 0), Analog 0-5, digital 18 and 19 are free to use as inputs/outputs.
An explanation of how the Arduinix works:
The ArduiNIX works by listening to a signal from the Arduino to tell it when to switch on one of the four anode pins., and when to switch on any single or combination of cathode channels in the two sets of 10 cathode sets that are controlled by the nixie tube driver chips.
The Anode pins go hot, send 180 volts to the nixie tube anode connection, and the system waits for the code to tell the arduinix to ground out one of the cathode pins that are controlled by the twoDriver ICs.
Once the Arduino code tells the ArduiNIX to open an anode channel, which is connected to the anode pin of your tube, and the code tells the ArduiNIX to ground out a cathode channel, 180 volts flow into the nixie tube, lighting the element that is connected to the cathode channel.
When multiplexing, you have one anode channel connected to two nixie tubes, and one set of nixie cathodes per cathode channels on the ArduiNIX. Doing so allows you to drive up to 8 ten element nixie tubes, pairs of tubes sharing anodes, alternating cathode grounds at a fast enough rate that we don’t see a flicker.
The ArduiNIX is 4×20 Multiplexed,meaning there are a total of 4 anodes and 20 cathodes that can be multiplexed and controlled through the code. This means that up to 80 signals can be controlled. Either eight 10 numeral tubes or 80 Neon bulbs like the INS-1. Or any combination of numeric tubes and dots.
The ArduiNIX V3 features Analog 0-5, GND, Reset, SCL, SDA, AREF, 5V, TX and RX broken out to an input/output section of headers at the front of the board near the cathode bank.
Don Luc
Project #1 – The AcceleroSynth – Mk9
Don Luc
SparkFun MicroView – OLED Arduino Module
Sparkfun: DEV-12923
Description
The MicroView is the first chip-sized Arduino compatible module that lets you see what your Arduino is thinking using a built-in OLED display. With the on-board 64×48 pixel OLED, you can use the MicroView to display sensor data, emails, pin status, and more. It also fits nicely into a breadboard to make prototyping easy. The MicroView also has a full-featured Arduino library to make programming the module easy.
In the heart of MicroView there is ATMEL’s ATmega328P, 5V & 3.3V LDO and a 64×48 pixel OLED display, together with other passive components that allow the MicroView to operate without any external components other than a power supply. Additionally, the MicroView is 100% code compatible with Arduino Uno (ATmega328P version), meaning the code that runs on an Arduino Uno will also be able to run on the MicroView if the IO pins used in the code are externally exposed on the MicroView.
Features
* 64×48 Pixel OLED Display
* ATmega328P
* 5V Operational Voltage
* VIN Range: 3.3V – 16V
* 12 Digital I/O Pins (3 PWM)
* 6 Analog Inputs
* Breadboard Friendly DIP Package
* 32KB Flash Memory
* Arduino IDE 1.0+ Compatible
Don Luc
Programming: Tri-Axis Gyro – L3G4200D – Parts
1 x Breadboard
1 X Arduino UNO
1 X SparkFun Tri-Axis Gyro Breakout – L3G4200D
5 X Jumper Wires Premium 3″ M/M
Don Luc
Programming: Tri-Axis Gyro – L3G4200D – Arduino
DonLuc1802Mk03.ino
// ***** Don Luc ***** // Software Version Information // DonLuc1802Mk03 1.0 #include <Wire.h> #define CTRL_REG1 0x20 #define CTRL_REG2 0x21 #define CTRL_REG3 0x22 #define CTRL_REG4 0x23 #define CTRL_REG5 0x24 int L3G4200D_Address = 105; //I2C address of the L3G4200D int x; int y; int z; void setup(){ Wire.begin(); Serial.begin(9600); Serial.println("starting up L3G4200D"); setupL3G4200D(2000); // Configure L3G4200 - 250, 500 or 2000 deg/sec delay(1500); //wait for the sensor to be ready } void loop(){ getGyroValues(); // This will update x, y, and z with new values Serial.print("X:"); Serial.print(x); Serial.print(" Y:"); Serial.print(y); Serial.print(" Z:"); Serial.println(z); delay(100); //Just here to slow down the serial to make it more readable } void getGyroValues(){ byte xMSB = readRegister(L3G4200D_Address, 0x29); byte xLSB = readRegister(L3G4200D_Address, 0x28); x = ((xMSB << 8) | xLSB); byte yMSB = readRegister(L3G4200D_Address, 0x2B); byte yLSB = readRegister(L3G4200D_Address, 0x2A); y = ((yMSB << 8) | yLSB); byte zMSB = readRegister(L3G4200D_Address, 0x2D); byte zLSB = readRegister(L3G4200D_Address, 0x2C); z = ((zMSB << 8) | zLSB); } int setupL3G4200D(int scale){ // Enable x, y, z and turn off power down: writeRegister(L3G4200D_Address, CTRL_REG1, 0b00001111); // If you'd like to adjust/use the HPF, you can edit the line below to configure CTRL_REG2: writeRegister(L3G4200D_Address, CTRL_REG2, 0b00000000); // Configure CTRL_REG3 to generate data ready interrupt on INT2 // No interrupts used on INT1, if you'd like to configure INT1 // or INT2 otherwise, consult the datasheet: writeRegister(L3G4200D_Address, CTRL_REG3, 0b00001000); // CTRL_REG4 controls the full-scale range, among other things: if(scale == 250){ writeRegister(L3G4200D_Address, CTRL_REG4, 0b00000000); }else if(scale == 500){ writeRegister(L3G4200D_Address, CTRL_REG4, 0b00010000); }else{ writeRegister(L3G4200D_Address, CTRL_REG4, 0b00110000); } // CTRL_REG5 controls high-pass filtering of outputs, use it // if you'd like: writeRegister(L3G4200D_Address, CTRL_REG5, 0b00000000); } void writeRegister(int deviceAddress, byte address, byte val) { Wire.beginTransmission(deviceAddress); // start transmission to device Wire.write(address); // send register address Wire.write(val); // send value to write Wire.endTransmission(); // end transmission } int readRegister(int deviceAddress, byte address){ int v; Wire.beginTransmission(deviceAddress); Wire.write(address); // register to read Wire.endTransmission(); Wire.requestFrom(deviceAddress, 1); // read a byte while(!Wire.available()) { // waiting } v = Wire.read(); return v; }
Don Luc
Programming: Tri-Axis Gyro – L3G4200D – Breadboard
Programming: Tri-Axis Gyro Breakout – L3G4200D
Project #1 – The AcceleroSynth – Mk4
1 X Arduino and Breadboard Holder
1 X Breadboard
1 X Arduino UNO Rev3
1 X Speaker
11 X Jumper Wires Premium 3″ M/M
4 X Colorful Round Tactile Button Switch
1 X Cable
AcceleroSynthMk4.1.ino
// ***** Don Luc ***** // Software Version Information // 4.1 Switch // Which pin on the Arduino is connected pin 8? // 8-ohm speaker #define tonePIN 8 // Switch int switchPin1 = 9; int switchPin2 = 10; int switchPin3 = 11; int switchPin4 = 12; boolean running = false; // Pitches #include "pitches.h" void loop() { if (digitalRead(switchPin1) == LOW) { // switch is pressed - pullup keeps pin high normally delay(100); // delay to debounce switch running = !running; // toggle running variable tone(tonePIN, NOTE_C4, 100); } if (digitalRead(switchPin2) == LOW) { // switch is pressed - pullup keeps pin high normally delay(100); // delay to debounce switch running = !running; // toggle running variable tone(tonePIN, NOTE_D4, 100); } if (digitalRead(switchPin3) == LOW) { // switch is pressed - pullup keeps pin high normally delay(100); // delay to debounce switch running = !running; // toggle running variable tone(tonePIN, NOTE_E4, 100); } if (digitalRead(switchPin4) == LOW) { // switch is pressed - pullup keeps pin high normally delay(100); // delay to debounce switch running = !running; // toggle running variable tone(tonePIN, NOTE_F4, 100); } }
pitches.h
{ /************************************************* * Public Constants *************************************************/ #define NOTE_B0 31 #define NOTE_C1 33 #define NOTE_CS1 35 #define NOTE_D1 37 #define NOTE_DS1 39 #define NOTE_E1 41 #define NOTE_F1 44 #define NOTE_FS1 46 #define NOTE_G1 49 #define NOTE_GS1 52 #define NOTE_A1 55 #define NOTE_AS1 58 #define NOTE_B1 62 #define NOTE_C2 65 #define NOTE_CS2 69 #define NOTE_D2 73 #define NOTE_DS2 78 #define NOTE_E2 82 #define NOTE_F2 87 #define NOTE_FS2 93 #define NOTE_G2 98 #define NOTE_GS2 104 #define NOTE_A2 110 #define NOTE_AS2 117 #define NOTE_B2 123 #define NOTE_C3 131 #define NOTE_CS3 139 #define NOTE_D3 147 #define NOTE_DS3 156 #define NOTE_E3 165 #define NOTE_F3 175 #define NOTE_FS3 185 #define NOTE_G3 196 #define NOTE_GS3 208 #define NOTE_A3 220 #define NOTE_AS3 233 #define NOTE_B3 247 #define NOTE_C4 262 #define NOTE_CS4 277 #define NOTE_D4 294 #define NOTE_DS4 311 #define NOTE_E4 330 #define NOTE_F4 349 #define NOTE_FS4 370 #define NOTE_G4 392 #define NOTE_GS4 415 #define NOTE_A4 440 #define NOTE_AS4 466 #define NOTE_B4 494 #define NOTE_C5 523 #define NOTE_CS5 554 #define NOTE_D5 587 #define NOTE_DS5 622 #define NOTE_E5 659 #define NOTE_F5 698 #define NOTE_FS5 740 #define NOTE_G5 784 #define NOTE_GS5 831 #define NOTE_A5 880 #define NOTE_AS5 932 #define NOTE_B5 988 #define NOTE_C6 1047 #define NOTE_CS6 1109 #define NOTE_D6 1175 #define NOTE_DS6 1245 #define NOTE_E6 1319 #define NOTE_F6 1397 #define NOTE_FS6 1480 #define NOTE_G6 1568 #define NOTE_GS6 1661 #define NOTE_A6 1760 #define NOTE_AS6 1865 #define NOTE_B6 1976 #define NOTE_C7 2093 #define NOTE_CS7 2217 #define NOTE_D7 2349 #define NOTE_DS7 2489 #define NOTE_E7 2637 #define NOTE_F7 2794 #define NOTE_FS7 2960 #define NOTE_G7 3136 #define NOTE_GS7 3322 #define NOTE_A7 3520 #define NOTE_AS7 3729 #define NOTE_B7 3951 #define NOTE_C8 4186 #define NOTE_CS8 4435 #define NOTE_D8 4699 #define NOTE_DS8 4978 } setup.inovoid setup() { // Switch pinMode(switchPin1, INPUT); digitalWrite(switchPin1, HIGH); // turn on pullup resistor pinMode(switchPin2, INPUT); digitalWrite(switchPin2, HIGH); // turn on pullup resistor pinMode(switchPin3, INPUT); digitalWrite(switchPin3, HIGH); // turn on pullup resistor pinMode(switchPin4, INPUT); digitalWrite(switchPin4, HIGH); // turn on pullup resistor }Don Luc