The Alpha Geek – Geeking Out

Arduino

Arduino

Project #5: Lamps – Mk01

DonLuc1804Mk02.ino

// ***** Don Luc *****
// Software Version Information
// 1.01
// DonLuc1804Mk02 1.01
// Lamps

#include <Adafruit_NeoPixel.h>
// Which pin on the Arduino is connected to the NeoPixels
// Pin connected => 6
#define PIN 6
// How many NeoPixels are attached to the Arduino
// NUMPIXELS => 4
#define NUMPIXELS 4
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
// Panel Mount 1K potentiometer Bright
// Bright => A0
const int sensorBright = A0;
int sBright = 0;
int brightVal = 0;         // the sensor value
int brightMin = 0;        // minimum sensor value
int brightMax = 0;           // maximum sensor value
// Panel Mount 1K potentiometer
// Delay => A1
const int sensorDelay = A1;
long delayVal = 0;
// Rotary Switch - 10 Position
// Number => A2 (0 => 9)
const int sensorNumber = A2;
// Panel Mount 1K potentiometer
// Red - Led
const int sensorRed = 9;
int red = 0;
int redMin = 0;
int redMax = 0;
// Panel Mount 1K potentiometer
// Green - Led
const int sensorGreen = 8;
int green = 0;
int greenMin = 0;
int greenMax = 0;
// Panel Mount 1K potentiometer
// Blue - Led
const int sensorBlue = 7;
int blue = 0;
int blueMin = 0;
int blueMax = 0;
// variables:
//int x = 0;
int y = 0;
int z = 0;

void loop() {

  number();

}

bright.ino

void bright(){

    switch (sBright) {
        case 1:
            brightVal = 255;
            break;
         default:
            // read the sensor:
            brightVal = analogRead(sensorBright);
            // apply the calibration to the sensor reading
            brightVal = map(brightVal, brightMin, brightMax, 0, 255);        
            // in case the sensor value is outside the range seen during calibration
            brightVal = constrain(brightVal, 0, 255);
            break;
    }
  
}

iled.ino

void iled() {

   // red
   red = analogRead(sensorRed); 
   // apply the calibration to the sensor reading red
   red = map(red, redMin, redMax, 0, 255);
   // in case the sensor value is outside the range seen during calibration
   red = constrain(red, 0, 255);
   // green
   green = analogRead(sensorGreen); 
   // apply the calibration to the sensor reading red
   green = map(green, greenMin, greenMax, 0, 255);
   // in case the sensor value is outside the range seen during calibration
   green = constrain(green, 0, 255);
   // blue
   blue = analogRead(sensorBlue); 
   // apply the calibration to the sensor reading red
   blue = map(blue, blueMin, blueMax, 0, 255);
   // in case the sensor value is outside the range seen during calibration
   blue = constrain(blue, 0, 255);
                 
}

neopix.ino

void neopix() {
  
  for(int i=0; i<NUMPIXELS; i++){

    // bright
    bright();   
    pixels.setBrightness( brightVal );
    // pixels.Color takes RGB values, from 0,0,0 up to 255,255,255    
    pixels.setPixelColor(i, pixels.Color(red,green,blue));
    // show
    pixels.show(); // This sends the updated pixel color to the hardware.
    // delay
    delay(50); // Delay for a period of time (in milliseconds).
    
  }
  
}

neopixt.ino

void neopixt() {
  
  for(int i=4; i<NUMPIXELS; i--){

    // bright
    bright();   
    pixels.setBrightness( brightVal );
    // pixels.Color takes RGB values, from 0,0,0 up to 255,255,255    
    pixels.setPixelColor(i, pixels.Color(red,green,blue));
    // show
    pixels.show(); // This sends the updated pixel color to the hardware.
    // delay
    delay(50); // Delay for a period of time (in milliseconds).
    
  }
  
}

number.ino

void number(){

  z = analogRead(sensorNumber);
  y = (z / 127);

  sBright = 20000;
  
  // range value:
  switch (y) {
    case  0:
      // Led
      iled();
      // neopix
      neopix();
      // delay
      delayVal = (0);     
      break;
    case 1:
      // Led
      iled();
      // neopix
      neopix();
      // delay
      sdelay();
      break;
    case 2:
      // Led
      iled();
      // neopixt
      neopixt();
      // delay
      sdelay();
      break;
    case 3:
      // White
      red = 255;
      green = 255;
      blue = 255; 
      // neopix       
      neopix();
      // delay
      delayVal = (0);
      break;  
    case 4:
      // Green
      red = 0;
      green = 255;
      blue = 0;
      // neopix        
      neopix();
      // delay
      delayVal = (0);
      break;
    case 5:
      // Red
      red = 255;
      green = 0;
      blue = 0;        
      // neopix        
      neopix();
      // delay
      delayVal = (0);
      break;
    case 6:
      // White
      red = 255;
      green = 255;
      blue = 255; 
      // neopix       
      neopix();
      // delay
      sdelay();
      break;       
    case 7:
      // Green
      red = 0;
      green = 255;
      blue = 0; 
      // neopix       
      neopix();
      // delay
      sdelay();
      break; 
    case 8:
      // Red
      red = 255;
      green = 0;
      blue = 0; 
      // neopix       
      neopix();
      // delay
      sdelay();
      break; 
    case 9:

      break;
  }
  
}

sdelay.ino

void sdelay() {

    delayVal = analogRead(sensorDelay);
    delayVal = (250 * delayVal);
      
}

setup.ino

void setup() {
  
    pixels.begin(); // This initializes the NeoPixel library.
    
}

Don Luc

ArduiNIX

ArduiNIX: 8 x Nixie Tubes

The ArduiNIX shield is a user programmable platform for driving multiplexed Nixie tube or other high voltage displays.

The ArduiNIX shield uses digital data pins 2,3,4,5,6,7,8,9,10,11,12,13 on the Arduino.

AREF, IOREF, TX(digital 1), RX(digital 0), Analog 0-5, digital 18 and 19 are free to use as inputs/outputs.

An explanation of how the Arduinix works:

The ArduiNIX works by listening to a signal from the Arduino to tell it when to switch on one of the four anode pins., and when to switch on any single or combination of cathode channels in the two sets of 10 cathode sets that are controlled by the nixie tube driver chips.

The Anode pins go hot, send 180 volts to the nixie tube anode connection, and the system waits for the code to tell the arduinix to ground out one of the cathode pins that are controlled by the twoDriver ICs.

Once the Arduino code tells the ArduiNIX to open an anode channel, which is connected to the anode pin of your tube, and the code tells the ArduiNIX to ground out a cathode channel, 180 volts flow into the nixie tube, lighting the element that is connected to the cathode channel.

When multiplexing, you have one anode channel connected to two nixie tubes, and one set of nixie cathodes per cathode channels on the ArduiNIX. Doing so allows you to drive up to 8 ten element nixie tubes, pairs of tubes sharing anodes, alternating cathode grounds at a fast enough rate that we don’t see a flicker.

The ArduiNIX is 4×20 Multiplexed,meaning there are a total of 4 anodes and 20 cathodes that can be multiplexed and controlled through the code. This means that up to 80 signals can be controlled. Either eight 10 numeral tubes or 80 Neon bulbs like the INS-1. Or any combination of numeric tubes and dots.

The ArduiNIX V3 features Analog 0-5, GND, Reset, SCL, SDA, AREF, 5V, TX and RX broken out to an input/output section of headers at the front of the board near the cathode bank.

Don Luc

SparkFun MicroView – OLED Arduino Module

Sparkfun: DEV-12923

Description

The MicroView is the first chip-sized Arduino compatible module that lets you see what your Arduino is thinking using a built-in OLED display. With the on-board 64×48 pixel OLED, you can use the MicroView to display sensor data, emails, pin status, and more. It also fits nicely into a breadboard to make prototyping easy. The MicroView also has a full-featured Arduino library to make programming the module easy.

In the heart of MicroView there is ATMEL’s ATmega328P, 5V & 3.3V LDO and a 64×48 pixel OLED display, together with other passive components that allow the MicroView to operate without any external components other than a power supply. Additionally, the MicroView is 100% code compatible with Arduino Uno (ATmega328P version), meaning the code that runs on an Arduino Uno will also be able to run on the MicroView if the IO pins used in the code are externally exposed on the MicroView.

Features

* 64×48 Pixel OLED Display
* ATmega328P
* 5V Operational Voltage
* VIN Range: 3.3V – 16V
* 12 Digital I/O Pins (3 PWM)
* 6 Analog Inputs
* Breadboard Friendly DIP Package
* 32KB Flash Memory
* Arduino IDE 1.0+ Compatible

Don Luc

Programming: Tri-Axis Gyro – L3G4200D – Arduino

DonLuc1802Mk03.ino

// ***** Don Luc *****
// Software Version Information
// DonLuc1802Mk03 1.0

#include <Wire.h>

#define CTRL_REG1 0x20
#define CTRL_REG2 0x21
#define CTRL_REG3 0x22
#define CTRL_REG4 0x23
#define CTRL_REG5 0x24

int L3G4200D_Address = 105; //I2C address of the L3G4200D

int x;
int y;
int z;

void setup(){

  Wire.begin();
  Serial.begin(9600);

  Serial.println("starting up L3G4200D");
  setupL3G4200D(2000); // Configure L3G4200  - 250, 500 or 2000 deg/sec

  delay(1500); //wait for the sensor to be ready 
  
}

void loop(){
  
   getGyroValues();  // This will update x, y, and z with new values

  Serial.print("X:");
  Serial.print(x);

  Serial.print(" Y:");
  Serial.print(y);

  Serial.print(" Z:");
  Serial.println(z);

  delay(100); //Just here to slow down the serial to make it more readable
  
}

void getGyroValues(){

  byte xMSB = readRegister(L3G4200D_Address, 0x29);
  byte xLSB = readRegister(L3G4200D_Address, 0x28);
  x = ((xMSB << 8) | xLSB);

  byte yMSB = readRegister(L3G4200D_Address, 0x2B);
  byte yLSB = readRegister(L3G4200D_Address, 0x2A);
  y = ((yMSB << 8) | yLSB);

  byte zMSB = readRegister(L3G4200D_Address, 0x2D);
  byte zLSB = readRegister(L3G4200D_Address, 0x2C);
  z = ((zMSB << 8) | zLSB);
  
}

int setupL3G4200D(int scale){

  // Enable x, y, z and turn off power down:
  writeRegister(L3G4200D_Address, CTRL_REG1, 0b00001111);

  // If you'd like to adjust/use the HPF, you can edit the line below to configure CTRL_REG2:
  writeRegister(L3G4200D_Address, CTRL_REG2, 0b00000000);

  // Configure CTRL_REG3 to generate data ready interrupt on INT2
  // No interrupts used on INT1, if you'd like to configure INT1
  // or INT2 otherwise, consult the datasheet:
  writeRegister(L3G4200D_Address, CTRL_REG3, 0b00001000);

  // CTRL_REG4 controls the full-scale range, among other things:

  if(scale == 250){
    writeRegister(L3G4200D_Address, CTRL_REG4, 0b00000000);
  }else if(scale == 500){
    writeRegister(L3G4200D_Address, CTRL_REG4, 0b00010000);
  }else{
    writeRegister(L3G4200D_Address, CTRL_REG4, 0b00110000);
  }

  // CTRL_REG5 controls high-pass filtering of outputs, use it
  // if you'd like:
  writeRegister(L3G4200D_Address, CTRL_REG5, 0b00000000);
  
}

void writeRegister(int deviceAddress, byte address, byte val) {
  
    Wire.beginTransmission(deviceAddress); // start transmission to device 
    Wire.write(address);       // send register address
    Wire.write(val);         // send value to write
    Wire.endTransmission();     // end transmission
    
}

int readRegister(int deviceAddress, byte address){

    int v;
    
    Wire.beginTransmission(deviceAddress);
    Wire.write(address); // register to read
    Wire.endTransmission();

    Wire.requestFrom(deviceAddress, 1); // read a byte

    while(!Wire.available()) {
      
        // waiting
        
    }

    v = Wire.read();
    return v;
    
}

Don Luc

Project #1 – The AcceleroSynth – Mk4

AcceleroSynth Mk4a

AcceleroSynth Mk4b

AcceleroSynth Mk4c

AcceleroSynth Mk4d

AcceleroSynth Mk4e

1 X Arduino and Breadboard Holder

1 X Breadboard

1 X Arduino UNO Rev3

1 X Speaker

11 X Jumper Wires Premium 3″ M/M

4 X Colorful Round Tactile Button Switch

1 X Cable

AcceleroSynthMk4.1.ino

// ***** Don Luc *****
// Software Version Information
// 4.1 Switch

// Which pin on the Arduino is connected pin 8?
// 8-ohm speaker
#define tonePIN 8
// Switch

int switchPin1 = 9;
int switchPin2 = 10;
int switchPin3 = 11;
int switchPin4 = 12;

boolean running = false;

// Pitches
#include "pitches.h"

void loop() {

  if (digitalRead(switchPin1) == LOW)
  {  // switch is pressed - pullup keeps pin high normally
    delay(100);                        // delay to debounce switch
    running = !running;                // toggle running variable
    tone(tonePIN, NOTE_C4, 100);
  }  

  if (digitalRead(switchPin2) == LOW)
  {  // switch is pressed - pullup keeps pin high normally
    delay(100);                        // delay to debounce switch
    running = !running;                // toggle running variable
    tone(tonePIN, NOTE_D4, 100);
  } 
  
  if (digitalRead(switchPin3) == LOW)
  {  // switch is pressed - pullup keeps pin high normally
    delay(100);                        // delay to debounce switch
    running = !running;                // toggle running variable
    tone(tonePIN, NOTE_E4, 100);
  }   

  if (digitalRead(switchPin4) == LOW)
  {  // switch is pressed - pullup keeps pin high normally
    delay(100);                        // delay to debounce switch
    running = !running;                // toggle running variable
    tone(tonePIN, NOTE_F4, 100);
  } 
  
}

pitches.h

{
/*************************************************
 * Public Constants
 *************************************************/

#define NOTE_B0  31
#define NOTE_C1  33
#define NOTE_CS1 35
#define NOTE_D1  37
#define NOTE_DS1 39
#define NOTE_E1  41
#define NOTE_F1  44
#define NOTE_FS1 46
#define NOTE_G1  49
#define NOTE_GS1 52
#define NOTE_A1  55
#define NOTE_AS1 58
#define NOTE_B1  62
#define NOTE_C2  65
#define NOTE_CS2 69
#define NOTE_D2  73
#define NOTE_DS2 78
#define NOTE_E2  82
#define NOTE_F2  87
#define NOTE_FS2 93
#define NOTE_G2  98
#define NOTE_GS2 104
#define NOTE_A2  110
#define NOTE_AS2 117
#define NOTE_B2  123
#define NOTE_C3  131
#define NOTE_CS3 139
#define NOTE_D3  147
#define NOTE_DS3 156
#define NOTE_E3  165
#define NOTE_F3  175
#define NOTE_FS3 185
#define NOTE_G3  196
#define NOTE_GS3 208
#define NOTE_A3  220
#define NOTE_AS3 233
#define NOTE_B3  247
#define NOTE_C4  262
#define NOTE_CS4 277
#define NOTE_D4  294
#define NOTE_DS4 311
#define NOTE_E4  330
#define NOTE_F4  349
#define NOTE_FS4 370
#define NOTE_G4  392
#define NOTE_GS4 415
#define NOTE_A4  440
#define NOTE_AS4 466
#define NOTE_B4  494
#define NOTE_C5  523
#define NOTE_CS5 554
#define NOTE_D5  587
#define NOTE_DS5 622
#define NOTE_E5  659
#define NOTE_F5  698
#define NOTE_FS5 740
#define NOTE_G5  784
#define NOTE_GS5 831
#define NOTE_A5  880
#define NOTE_AS5 932
#define NOTE_B5  988
#define NOTE_C6  1047
#define NOTE_CS6 1109
#define NOTE_D6  1175
#define NOTE_DS6 1245
#define NOTE_E6  1319
#define NOTE_F6  1397
#define NOTE_FS6 1480
#define NOTE_G6  1568
#define NOTE_GS6 1661
#define NOTE_A6  1760
#define NOTE_AS6 1865
#define NOTE_B6  1976
#define NOTE_C7  2093
#define NOTE_CS7 2217
#define NOTE_D7  2349
#define NOTE_DS7 2489
#define NOTE_E7  2637
#define NOTE_F7  2794
#define NOTE_FS7 2960
#define NOTE_G7  3136
#define NOTE_GS7 3322
#define NOTE_A7  3520
#define NOTE_AS7 3729
#define NOTE_B7  3951
#define NOTE_C8  4186
#define NOTE_CS8 4435
#define NOTE_D8  4699
#define NOTE_DS8 4978
  
}
setup.ino
void setup() {

  // Switch
  pinMode(switchPin1, INPUT);
  digitalWrite(switchPin1, HIGH);      // turn on pullup resistor
  pinMode(switchPin2, INPUT);
  digitalWrite(switchPin2, HIGH);      // turn on pullup resistor  
  pinMode(switchPin3, INPUT);
  digitalWrite(switchPin3, HIGH);      // turn on pullup resistor
  pinMode(switchPin4, INPUT);
  digitalWrite(switchPin4, HIGH);      // turn on pullup resistor
    
}

Don Luc

Categories
Archives