Microcontrollers
Microcontrollers
Project #10: ESP8266 Thing – Web Server – Mk03
AP Web Server
Not only can the ESP8266 connect to a WiFi network and interact with the Internet, but it can also set up a network of its own, allowing other devices to connect directly to it. This example demonstrates how to turn the ESP8266 into an access point (AP), and serve up web pages to any connected client.
After uploading this sketch, find another device that you can connect to a WiFi network – phone, laptop, etc. Look for a network called “Thing-XXXX”, where XXXX is the last 2 bytes of the Thing’s MAC address.
WiFi => Yes
ESP8266 Thing XXXX
He sketch sets the network’s password to “donlucmk01”.
After connecting to your Thing’s AP network, load up a browser and point it to 192.168.4.1/read. The Thing should serve up a web page showing you its ADC and digital pin 12 readings:
Analog Pin = XXX
Digital Pin: XXX
Humidity and Temperature
Humidity: XX.XX%
Celsius: XX.XX*C
Fahrenheit: XX.XX*F
LED Green
After that, give 192.168.4.1/led/0 (No) and 192.168.4.1/led/1 (Yes) a try, and keep an eye on the Thing’s green LED while you do.
RHT03 Humidity and Temperature Sensor
The RHT03 is a low cost humidity and temperature sensor with a single wire digital interface. The sensor is calibrated and doesn’t require extra components so you can get right to measuring relative humidity and temperature.
DonLuc1901Mk02
1 x SparkFun ESP8266 Thing
1 x SparkFun FTDI Basic Breakout – 3.3V
1 x RHT03 Humidity and Temperature Sensor
3 x Jumper Wires 6″ M/M
1 x Full-Size Breadboard
1 x SparkFun Cerberus USB Cable
SparkFun ESP8266 Thing
LG1 – Digital 5
RHT – Digital 4
GND – GND
VIN – +3.3V
DonLuc1901Mk02p.ino
// ***** Don Luc Electronics ***** // Software Version Information // Project #10: SparkFun ESP8266 Thing – AP Web Server - Mk02 // 01-02 // DonLuc1901Mk01p.ino 01-02 // SparkFun ESP8266 Thing // AP Web Server // RHT03 Humidity and Temperature Sensor // Include Library Code #include <ESP8266WiFi.h> #include <SparkFun_RHT03.h> // WiFi Definitions const char WiFiAPPSK[] = "donlucmk01"; // Pin Definitions const int LED_PIN = 5; // Thing's onboard, green LED const int ANALOG_PIN = A0; // The only analog pin on the Thing const int DIGITAL_PIN = 12; // Digital pin to be read // WiFi WiFiServer server(80); // RHT Humidity and Temperature Sensor const int RHT03_DATA_PIN = 4; // RHT03 data pin Digital 4 RHT03 rht; // This creates a RTH03 object, which we'll use to interact with the sensor float latestHumidity; float latestTempC; float latestTempF; void loop() { // RHT03 Humidity and Temperature Sensor isRHT03(); // Check if a client has connected WiFiClient client = server.available(); if (!client) { return; } // Read the first line of the request String req = client.readStringUntil('\r'); Serial.println(req); client.flush(); // Match the request int val = -1; // We'll use 'val' to keep track of both the request type (read/set) and value if set. if (req.indexOf("/led/0") != -1) val = 0; // Will write LED low else if (req.indexOf("/led/1") != -1) val = 1; // Will write LED high else if (req.indexOf("/read") != -1) val = -2; // Will print pin reads // Otherwise request will be invalid. We'll say as much in HTML // Set GPIO5 according to the request if (val >= 0) digitalWrite(LED_PIN, val); client.flush(); // Prepare the response. Start with the common header: String s = "HTTP/1.1 200 OK\r\n"; s += "Content-Type: text/html\r\n\r\n"; s += "<!DOCTYPE HTML>\r\n<html>\r\n"; // If we're setting the LED, print out a message saying we did if (val >= 0) { s += "LED is now "; s += (val)?"on":"off"; } else if (val == -2) { // If we're reading pins, print out those values: s += "Analog Pin = "; s += String(analogRead(ANALOG_PIN)); s += "<br>"; // Go to the next line. s += "Digital Pin 12 = "; s += String(digitalRead(DIGITAL_PIN)); s += "<br>"; // Go to the next line. s += "Humidity and Temperature"; s += "<br>"; // Go to the next line. s += "Humidity : "; s += String(latestHumidity); // Humidity s += "%"; s += "<br>"; // Go to the next line. s += "Celsius: "; s += String(latestTempC); // Temperature *C s += "*C"; s += "<br>"; // Go to the next line. s += "Fahrenheit: "; s += String(latestTempF); // Temperature *F s += "*F"; } else { s += "Invalid Request.<br> Try /led/1, /led/0, or /read."; } s += "</html>\n"; // Send the response to the client client.print(s); delay(1); Serial.println("Client disonnected"); // The client will actually be disconnected when the function returns and 'client' object is detroyed }
getRHT.ino
// RHT03 Humidity and Temperature Sensor void isRHT03(){ // Call rht.update() to get new humidity and temperature values from the sensor. int updateRet = rht.update(); // The humidity(), tempC(), and tempF() functions can be called -- after // a successful update() -- to get the last humidity and temperature value latestHumidity = rht.humidity(); latestTempC = rht.tempC(); latestTempF = rht.tempF(); }
setWiFi.ino
// WiFi void setupWiFi() { // WiFi mode WIFI_AP WiFi.mode(WIFI_AP); // Append the last two bytes of the MAC (HEX'd) to "Thing-": uint8_t mac[WL_MAC_ADDR_LENGTH]; WiFi.softAPmacAddress(mac); String macID = String(mac[WL_MAC_ADDR_LENGTH - 2], HEX) + String(mac[WL_MAC_ADDR_LENGTH - 1], HEX); macID.toUpperCase(); String AP_NameString = "ESP8266 Thing " + macID; char AP_NameChar[AP_NameString.length() + 1]; memset(AP_NameChar, 0, AP_NameString.length() + 1); for (int i=0; i<AP_NameString.length(); i++) AP_NameChar[i] = AP_NameString.charAt(i); WiFi.softAP(AP_NameChar, WiFiAPPSK); } // init Hardware void initHardware() { // Serial Serial.begin(115200); // LED Green pinMode(DIGITAL_PIN, INPUT_PULLUP); pinMode(LED_PIN, OUTPUT); digitalWrite(LED_PIN, LOW); // RHT03 Humidity and Temperature Sensor // Call rht.begin() to initialize the sensor and our data pin rht.begin(RHT03_DATA_PIN); }
setup.ino
// Setup void setup() { // Hardware initHardware(); // WiFi setupWiFi(); server.begin(); }
Don Luc
Project #10: ESP8266 Thing – Blink – Mk02
Soldering
Plated through-hole soldering (PTH), flux-core solder alloys commonly used for electrical soldering are 60/40 Sn-Pb used principally in electrical/electronic work and TENMA soldering station temperature controlled digital.
Hardware Assembly
We’re getting ahead of ourselves. To connect the FTDI programmer to your Thing you’ll need to solder something to the Thing. What, exactly, you solder to the board depends both on how you’ll use it in your project, and how you’ll interface it with the programmer. When it comes to selecting a header (or wire) to solder, there are a variety of options. We’ve tried a lot of them with the Thing:
Or you can mix and match headers to best fit your needs. Right-angle male headers may help to interface between the FTDI and the Thing. Straight male headers are a good choice for low-profile connections. Straight female headers may help with connecting to I2C sensors. And, of course, wire can be soldered to any of the pins that have a long way to connect to something.
10 pin – Break Away Headers – Straight
4 pin – Break Away Headers – Straight
6 pin – Break Away Male Headers – Right Angle
Once you’ve soldered up at least the programming port, you’re ready to load some code onto the Thing.
Programming the Thing
The ESP8266 has a built-in serial bootloader, which allows for easy programming and re-programming. You don’t need a specialized, expensive programmer – just a simple, USB-to-Serial converter. The FTDI Basic’s 6-pin header matches up exactly to the Thing’s 6-pin serial port header. To set up for programming, simply connect the FTDI directly to this port – take care to match up the DTR and GND pins.
Blink
Let’s blink some LEDs and IoT (Internet our Thing). To verify that everything works Blink: toggle pin 5, which is attached to the onboard LED Green, toggle pin 4 which is LED Green.
DonLuc1901Mk01
1 x SparkFun ESP8266 Thing
1 x SparkFun FTDI Basic Breakout – 3.3V
1 x LED Green
1 x 100 Ohm
4 x Jumper Wires 3″ M/M
1 x Full-Size Breadboard
1 x USB Cable A to Mini-B
SparkFun ESP8266 Thing
LG1 – Digital 5
LG2 – Digital 4
GND – GND
VIN – +3.3V
DonLuc1901Mk01p.ino
// ***** Don Luc Electronics ***** // Software Version Information // Project #10: SparkFun ESP8266 Thing – Blink - Mk02 // 01-01 // DonLuc1901Mk01p.ino 01-01 // SparkFun ESP8266 Thing // Blink // Include Library Code #define ESP8266_LED 5 // LED Green int iLEDGreen = 4; // LED Green void loop() { // ESP8266_LED, iLEDGreen digitalWrite(ESP8266_LED, LOW); digitalWrite(iLEDGreen, LOW); delay(2000); digitalWrite(ESP8266_LED, HIGH); delay(2000); digitalWrite(ESP8266_LED, LOW); delay(2000); digitalWrite(iLEDGreen, HIGH); delay(2000); }
setup.ino
// Setup void setup() { // LED pinMode(ESP8266_LED, OUTPUT); // ESP8266_LED Green pinMode(iLEDGreen, OUTPUT); // LED Green }
Don Luc
Project #10: SparkFun ESP8266 Thing – Mk01
Description
The SparkFun ESP8266 Thing is a breakout and development board for the ESP8266 WiFi SoC – a leading platform for Internet of Things (IoT) or WiFi-related projects. The Thing is low-cost and easy to use, and Arduino IDE integration can be achieved in just a few steps. We’ve made the ESP8266 easy to use by breaking out all of the module’s pins, adding a LiPo charger, power supply, and all of the other supporting circuitry it requires.
Why the name? We lovingly call it the “Thing” due to it being the perfect foundation for your Internet of Things project. The Thing does everything from turning on an LED to posting data with datastream, and can be programmed just like any microcontroller. You can even program the Thing through the Arduino IDE by installing the ESP8266 Arduino addon.
The SparkFun ESP8266 Thing is a relatively simple board. The pins are broken out to two parallel, breadboard-compatible rows. USB and LiPo connectors at the top of the board provide power – controlled by the nearby ON/OFF switch. LEDs towards the inside of the board indicate power, charge, and status of the IC. The ESP8266’s maximum voltage is 3.6V, so the Thing has an onboard 3.3V regulator to deliver a safe, consistent voltage to the IC. That means the ESP8266’s I/O pins also run at 3.3V, you’ll need to level shift any 5V signals running into the IC. A 3.3V FTDI Basic is required to program the SparkFun ESP8266 Thing, but other serial converters with 3.3V I/O levels should work just fine as well. The converter does need a DTR line in addition to the RX and TX pins.
Features
- All module pins broken out
- On-board LiPo charger/power supply
- 802.11 b/g/n
- Wi-Fi Direct (P2P), soft-AP
- Integrated TCP/IP protocol stack
- Integrated TR switch, balun, LNA, power amplifier and matching network
- Integrated PLLs, regulators, DCXO and power management units
- Integrated low power 32-bit CPU could be used as application processor
- +19.5dBm output power in 802.11b mode
Don Luc
Project #7: RGB LCD Shield – MCP4131 – Mk10
Microchip Technology Inc – MCP4131
Features:
-7-bit: 128 Resistors with 129 Taps to VSS and VDD
-SPI compatible interface
-Automatic Recall of Potentiometer Wiper Settings Resistance Values: 5k Ohm, 10k Ohm, 50k Ohm, 100k Ohm
-Absolute (Rheostat): <100 ppm (typ.)
-Ratiometric (Potentiometer): <10 ppm (typ.)
Device Overview – Summary
The MCP41/423X devices are volatile, 7-bit (129 wiper steps) digital potentiometers with an SPI compatible interface. The MCP41/42XX family is available with end-to-end resistor values of 5K Ohm, 10K Ohm, 50k Ohm and 100K Ohm. These devices offer a variety of configurations simplifying design while minimizing cost, package size and pin count.
Additional Features
-7-bit: 128 Resistors with 129 Taps to VSS and VDD
-SPI compatible interface
-Automatic Recall of Potentiometer Wiper Settings Resistance Values: 5k Ohm, 10k Ohm, 50k Ohm, 100k Ohm
-Low Tempco: Absolute (Rheostat): <100 ppm (typ.)
-Ratiometric (Potentiometer): <10 ppm (typ.)
-Low Wiper Resistance: 100 Ohm (typ.)
-Low-Power Operation: 1µA Max Static Current
-Wide Operating Voltage: 1.8V to 5.5V
-Extended Temperature Range: -40°C to +125°C
MCP4131 – Digital Potentiometer – 10K
Potentiometers are incredibly useful, whether you’re controlling the volume on your stereo or the ‘mood lighting’ in your room. The problem with traditional potentiometers is the fact that your microcontroller doesn’t have an easy way to interface with them. Digital potentiometers solve that problem by allowing you to control a voltage splitter with digital signals.
Wire it up just like a potentiometer and use serial signals to ‘turn the knob’. Another handy feature of digital potentiometers is that because they aren’t controlled mechanically, they don’t have a pre-determined sweep profile. In other words, depending on the way you write your code the potentiometer can ‘sweep’ in a linear fashion, a logarithmic fashion, or according to any other profile you like. Digital potentiometers can also be used in conjunction with rotary encoders to consolidate large banks of potentiometers into one ‘smart’ rotary control.
Digital Potentiometer MCP41131 and Arduino
We know the analog potentiometer, is a three-terminal resistor with a sliding contact that forms an adjustable voltage divider. Potentiometers many application such like:
1- Volume controls on audio equipment
2- Control the amplifier gain and offset
3- Transducer displacement transducers
Many other application, but did you want to control the resistance value by Arduino instead of using analog one. Analog potentiometers have some problem with Arduino doesn’t have an easy way to interface with them. The digital potentiometer, give you an ability to adjust the resistance, allowing you to control a voltage splitter with digital signals. This IC using SPI Protocol to communicate with Arduino.
DonLuc1808Mk03
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x MCP4131
1 x LED Green
1 x 270 Ohm Resistance
1 x NeoPixel Stick – 8 x 5050 RGB LED
1 x 100K Potentiometer
1 x Black Knob
7 x Jumper Wires 3″ M/M
12 x Jumper Wires 6″ M/M
1 x Full-Size Breadboard
1 x USB Cable A to B
Arduino UNO
MC1 – Digital 13
MC2 – Digital 11
MC3 – Digital 10
LR1 – Digital 3
POT – Analog 1
GND – GND
VIN – +5V
DonLuc1808Mk03p.ino
// ***** Don Luc Electronics ***** // Software Version Information // Project #7: RGB LCD Shield – MCP4131 – Mk10 // 8-03 // DonLuc1808Mk03p 8-03 // RGB LCD Shield // MCP4131 // Include Library Code #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> #include <Adafruit_NeoPixel.h> #include <SPI.h> // RGB LCD Shield Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // NeoPixels #define PIN 3 // On digital pin 3 #define NUMPIXELS 8 // NeoPixels NUMPIXELS = 8 Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800); int red = 0; // Red int green = 0; // Green int blue = 0; // Blue int iNeo = 0; // Neopix const int iBriPin = A1; // Panel Mount 1K potentiometer Brightneed int iBri = 0; // Neopix Brightness int iBriMin = 1023; // Brightneed minimum sensor value int iBriMax = 0; // Brightneed maximun sensor value int z = 0; // Value // MCP4131 int pinCS = 10; // MCP4131 byte address = 0x00; // Address int i = 0; // Value void loop() { // MCP4131 isMCP4131(); delay(1000); // Clear RGBLCDShield.clear(); }
getMCP4131.ino
// MCP4131 void isMCP4131() { // NeoPixels isNUMPIXELSoff(); // isNUMPIXELSoff // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("MCP4131"); // MCP4131 // MCP4131 // Move the potentiometer in one direction for ( i = 0; i <= 128; i++) { isNUMPIXELSoff(); // isNUMPIXELSoff MCP4131PotWrite(i); isNUMPIXELS(); // isNUMPIXELS delay(100); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Level = "); // MCP4131 RGBLCDShield.print(i); // MCP4131 } delay(2000); // wait a couple seconds // Now mover potentiometer in other directions for ( i = 128; i >= 0; i--) { isNUMPIXELSoff(); // isNUMPIXELSoff MCP4131PotWrite(i); isNUMPIXELS(); // isNUMPIXELS delay(100); RGBLCDShield.setCursor(0, 1); RGBLCDShield.print(" "); RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Level = "); // MCP4131 RGBLCDShield.print(i); // MCP4131 } delay(2000); } // MCP4131PotWrite int MCP4131PotWrite(int value) { digitalWrite(pinCS, LOW); // pinCS Off SPI.transfer(address); // SPI Address SPI.transfer(value); // SPI Value digitalWrite(pinCS, HIGH); // pinCS On }
neopix.ino
// NeoPixels void neopix() { // Brightness iBri = analogRead(iBriPin); // iBri apply the calibration to the sensor reading iBri = map(iBri, iBriMin, iBriMax, 0, 255); // iBri in case the sensor value is outside the range seen during calibration iBri = constrain(iBri, 0, 255); pixels.setBrightness( iBri ); // Pixels.Color takes RGB values, from 0,0,0 up to 255,255,255 pixels.setPixelColor( iNeo, pixels.Color(red,green,blue) ); // This sends the updated pixel color to the hardware pixels.show(); // Delay for a period of time (in milliseconds) delay(50); } // isNUMPIXELS void isNUMPIXELS() { // Neopix Value z = ( i / 16 ); // Value // Neopix Value switch ( z ) { case 0: // NeoPixels // Green for(int y=0; y<=0; y++) { red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 1: // Green // NeoPixels for(int y=0; y<=1; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 2: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 3: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Yellow for(int y=3; y<=3; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 4: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Yellow for(int y=3; y<=4; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 5: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Yellow for(int y=3; y<=5; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 6: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Yellow for(int y=3; y<=5; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Red for(int y=6; y<=6; y++){ red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 7: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Yellow for(int y=3; y<=5; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Red for(int y=6; y<=7; y++){ red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 8: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Yellow for(int y=3; y<=5; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Red for(int y=6; y<=7; y++){ red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; } } // isNUMPIXELSoff void isNUMPIXELSoff() { // Black // NeoPixels for(int y=0; y < NUMPIXELS; y++) { red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("MCP4131"); // MCP4131 delay(5000); // Clear RGBLCDShield.clear(); // NeoPixels pixels.begin(); // This initializes the NeoPixel library // NeoPixels isNUMPIXELSoff(); // isNUMPIXELSoff // MCP4131 pinMode(pinCS, OUTPUT); // MCP4131 OUTPUT SPI.begin(); // SPI }
Don Luc
Project #7: RGB LCD Shield – Bi-Color LED – Mk09
Bi-Color LED
Bi-color LEDs contain two different LED emitters in one case. There are two types of these. One type consists of two dies connected to the same two leads antiparallel to each other. Current flow in one direction emits one color, and current in the opposite direction emits the other color. The other type consists of two dies with separate leads for both dies and another lead for common anode or cathode so that they can be controlled independently. The most common bi-color combination is red/traditional green, however, other available combinations include amber/traditional green, red/pure green, red/blue, and blue/pure green.
Super Bright BiPolar LEDs
Package of 12 super bright Red/Green jumbo T1 3/4 5mm LEDs. These have a diffused frosted lens and 3 long leads. Prime 100% perfect and bright. CODE 7: 100% Prime Parts. Stock # GP55
DonLuc1808Mk02
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
3 x Bi-Color LED GP55
3 x 270 Ohm Resistance
3 x 330 Ohm Resistance
3 x Jumper Wires 3″ M/M
7 x Jumper Wires 6″ M/M
1 x Size Breadboard
1 x USB Cable A to B
Arduino UNO
LG3 – Digital 5
LR3 – Digital 4
LG2 – Digital 3
LR2 – Digital 2
LG1 – Digital 1
LR1 – Digital 0
GND – GND
DonLuc1808Mk02p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – Bi-Color LED – Mk09 // 8-02 // DonLuc1808Mk02p 8-02 // RGB LCD Shield // Bi-Color LED // Include Library Code #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> // RGB LCD Shield Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // Bi-Color LED int iLR1 = 0; // LED Red 1 int iLG1 = 1; // LED Green 1 int iLR2 = 2; // LED Red 2 int iLG2 = 3; // LED Green 2 int iLR3 = 4; // LED Red 3 int iLG3 = 5; // LED Green 3 void loop() { // Bi-Color LED isBiColor(); delay(1000); // Clear RGBLCDShield.clear(); }
getBiColor.ino
// Bi-Color LED void isBiColor() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Bi-Color LED"); // Bi-Color LED // Bi-Color LED // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("L1x- L2x- L3x-"); // Bi-Color LED Red digitalWrite(iLR1, HIGH); // LED Red 1 digitalWrite(iLG1, LOW); // LED Green 1 digitalWrite(iLR2, HIGH); // LED Red 2 digitalWrite(iLG2, LOW); // LED Green 2 digitalWrite(iLR3, HIGH); // LED Red 3 digitalWrite(iLG3, LOW); // LED Green 3 delay( 2000 ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("L1-x L2-x L3-x"); // Bi-Color LED Green digitalWrite(iLR1, LOW); // LED Red 1 digitalWrite(iLG1, HIGH); // LED Green 1 digitalWrite(iLR2, LOW); // LED Red 2 digitalWrite(iLG2, HIGH); // LED Green 2 digitalWrite(iLR3, LOW); // LED Red 3 digitalWrite(iLG3, HIGH); // LED Green 3 delay( 2000 ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("L1xx L2xx L3xx"); // Bi-Color LED Red-Green digitalWrite(iLR1, HIGH); // LED Red 1 digitalWrite(iLG1, HIGH); // LED Green 1 digitalWrite(iLR2, HIGH); // LED Red 2 digitalWrite(iLG2, HIGH); // LED Green 2 digitalWrite(iLR3, HIGH); // LED Red 3 digitalWrite(iLG3, HIGH); // LED Green 3 delay( 2000 ); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Bi-Color LED"); // Bi-Color LED delay(5000); // Clear RGBLCDShield.clear(); // Bi-Color LED pinMode(iLR1, OUTPUT); // LED Red 1 pinMode(iLG1, OUTPUT); // LED Green 1 pinMode(iLR2, OUTPUT); // LED Red 2 pinMode(iLG2, OUTPUT); // LED Green 2 pinMode(iLR3, OUTPUT); // LED Red 3 pinMode(iLG3, OUTPUT); // LED Green 3 }
Don Luc
Project #7: RGB LCD Shield – Rotary Switch – Mk08
Rotary Switch – 10 Position
This is a single pole, 10 position rotary switch able to select up to 10 different states in a durable package. Unlike our other rotary switch, this model is much more robust and capable of handling larger currents and voltages.
With a max voltage rating of 125VAC at 0.3A and a dielectric strength of 250VAC for 1 minute this is a serious little rotary switch capable of working with some of your bigger projects. Though this switch requires you to use 11 pins and is not breadboard friendly we do offer a breakout board (found in the Recommended Products section below) to provide easier access to its capabilities.
1 x Rotary Switch – 10 Position
1 x Hex Nut
2 x Washer
Rating: 0.3A/125VAC
Contact Resistance: 50M Ohm max
Insulation Resistance: 100M Ohm @ 500VDC min
Dielectric Strength: 250VAC for 1 minute
Rotation torque: 1.0+0.5KG/cm
Shaft: 3/8″
Rotary Switch Breakout
This is the SparkFun Rotary Switch Breakout, a very simple board designed to easily provide you access to each pin on our 10-position rotary switches. This breakout allows you to easily add a rotary switch to your next project without having to worry about attaching its unique footprint to a custom board or solderless breadboard. All you need to do is solder the 10-position rotary switch into the breakout (using the silkscreen on the board as a guide) and each pin will become available for breadboard or hookup wire compatibility.
Each one of these boards breaks out the common ( C ), 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 positions on the board into 0.1″ spaced pins.
NeoPixel Stick – 8 x 5050 RGB LED
Make your own little LED strip arrangement with this stick of NeoPixel LEDs. We crammed 8 of the tiny 5050 (5mm x 5mm) smart RGB LEDs onto a PCB with mounting holes and a chainable design. Use only one microcontroller pin to control as many as you can chain together! Each LED is addressable as the driver chip is inside the LED. Each one has ~18mA constant current drive so the color will be very consistent even if the voltage varies, and no external choke resistors are required making the design slim. Power the whole thing with 5VDC (4-7V works) and you’re ready to rock.
DonLuc1808Mk01
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x Rotary Switch – 10 Position
1 x Rotary Switch Breakout
1 x Black Knob
1 x NeoPixel Stick – 8 x 5050 RGB LED
1 x 100K Potentiometer
1 x Black Knob
11 x 1K Ohm Resistance
17 x Jumper Wires 3″ M/M
6 x Jumper Wires 6″ M/M
1 x Size Breadboard
1 x USB Cable A to B
Arduino UNO
NEO – Digital 0
ROT – Analog 1
POT – Analog 0
GND – GND
VIN – +5V
DonLuc1808Mk01p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – Rotary Switch – Mk08 // 8-01 // DonLuc1808Mk01p 8-01 // RGB LCD Shield // Rotary Switch // Include Library Code #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> #include <Adafruit_NeoPixel.h> // RGB LCD Shield Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // NeoPixels #define PIN 0 // On digital pin 3 #define NUMPIXELS 8 // NeoPixels NUMPIXELS = 8 Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800); int red = 0; // Red int green = 0; // Green int blue = 0; // Blue int iNeo = 0; // Neopix const int iBriPin = A0; // Panel Mount 1K potentiometer Brightneed int iBri = 0; // Neopix Brightness int iBriMin = 1023; // Brightneed minimum sensor value int iBriMax = 0; // Brightneed maximun sensor value // Rotary Switch // Rotary Switch - 10 Position // Number = 1 => 10 int iRotNum = A1; // Rotary Switch int iVal = 0; // iVal - Value int z = 0; // Number void loop() { // Rotary Switch isRot(); delay(1000); // Clear RGBLCDShield.clear(); }
getRot.ino
// Rotary Switch void isRot() { // NeoPixels for(int y=0; y < NUMPIXELS; y++) { // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Rotary Switch"); // Rotary Switch // Rotary Switch z = analogRead( iRotNum ); // Rotary Switch iVal = ( z / 100 ); // Rotary Value // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iVal = "); // Rotary Value RGBLCDShield.print( iVal + 1 ); // Range Value switch ( iVal ) { case 0: // Red // NeoPixels for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 1: // Green // NeoPixels for(int y=0; y<NUMPIXELS; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 2: // Blue // NeoPixels for(int y=0; y<NUMPIXELS; y++){ red = 0; // Red green = 0; // Green blue = 255; // Blue iNeo = y; // Neopix neopix(); } break; case 3: // White // NeoPixels for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 255; // Green blue = 255; // Blue iNeo = y; // Neopix neopix(); } break; case 4: // NeoPixels // Red for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } delay( 2000 ); // Green for(int y=0; y<NUMPIXELS; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } delay( 2000 ); // Blue for(int y=0; y<NUMPIXELS; y++){ red = 0; // Red green = 0; // Green blue = 255; // Blue iNeo = y; // Neopix neopix(); } break; case 5: // NeoPixels // Yellow for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 6: // NeoPixels // Orange for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 102; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 7: // NeoPixels // Violet for(int y=0; y<NUMPIXELS; y++){ red = 204; // Red green = 102; // Green blue = 204; // Blue iNeo = y; // Neopix neopix(); } break; case 8: // NeoPixels // Red red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = 0; // Neopix neopix(); delay( 1000 ); // Green red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = 1; // Neopix neopix(); delay( 1000 ); // Blue red = 0; // Red green = 0; // Green blue = 255; // Blue iNeo = 2; // Neopix neopix(); delay( 1000 ); // White red = 255; // Red green = 255; // Green blue = 255; // Blue iNeo = 3; // Neopix neopix(); delay( 1000 ); // Pink red = 255; // Red green = 153; // Green blue = 203; // Blue iNeo = 4; // Neopix neopix(); delay( 1000 ); // Orange red = 255; // Red green = 102; // Green blue = 0; // Blue iNeo = 5; // Neopix neopix(); delay( 1000 ); // Violet red = 204; // Red green = 102; // Green blue = 204; // Blue iNeo = 6; // Neopix neopix(); delay( 1000 ); // Yellow red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = 7; // Neopix neopix(); delay( 1000 ); break; case 9: // NeoPixels // Red red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = 7; // Neopix neopix(); delay( 1000 ); // Green red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = 6; // Neopix neopix(); delay( 1000 ); // Blue red = 0; // Red green = 0; // Green blue = 255; // Blue iNeo = 5; // Neopix neopix(); delay( 1000 ); // White red = 255; // Red green = 255; // Green blue = 255; // Blue iNeo = 4; // Neopix neopix(); delay( 1000 ); // Pink red = 255; // Red green = 153; // Green blue = 203; // Blue iNeo = 3; // Neopix neopix(); delay( 1000 ); // Orange red = 255; // Red green = 102; // Green blue = 0; // Blue iNeo = 2; // Neopix neopix(); delay( 1000 ); // Violet red = 204; // Red green = 102; // Green blue = 204; // Blue iNeo = 1; // Neopix neopix(); delay( 1000 ); // Yellow red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = 0; // Neopix neopix(); delay( 1000 ); break; } }
neopix.ino
// NeoPixels void neopix() { // Brightness iBri = analogRead(iBriPin); // iBri apply the calibration to the sensor reading iBri = map(iBri, iBriMin, iBriMax, 0, 255); // iBri in case the sensor value is outside the range seen during calibration iBri = constrain(iBri, 0, 255); pixels.setBrightness( iBri ); // Pixels.Color takes RGB values, from 0,0,0 up to 255,255,255 pixels.setPixelColor( iNeo, pixels.Color(red,green,blue) ); // This sends the updated pixel color to the hardware pixels.show(); // Delay for a period of time (in milliseconds) delay(50); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Rotary Switch"); // Rotary Switch delay(5000); // Clear RGBLCDShield.clear(); // NeoPixels pixels.begin(); // This initializes the NeoPixel library // NeoPixels for(int y=0; y < NUMPIXELS; y++) { // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } }
Don Luc
Project #7: RGB LCD Shield – Line Sensor Breakout – Mk07
Line Sensor Breakout – QRE1113 (Analog)
Description
This version of the QRE1113 breakout board features an easy-to-use analog output, which will vary depending on the amount of IR light reflected back to the sensor. This tiny board is perfect for line sensing applications and can be used in both 3.3V and 5V systems.
The board’s QRE1113 IR reflectance sensor is comprised of two parts – an IR emitting LED and an IR sensitive phototransistor. When you apply power to the VCC and GND pins the IR LED inside the sensor will illuminate. A 100 Ohm resistor is on-board and placed in series with the LED to limit current. A 10k Ohm resistor pulls the output pin high, but when the light from the LED is reflected back onto the phototransistor the output will begin to go lower. The more IR light sensed by the phototransistor, the lower the output voltage of the breakout board.
These sensors are widely used in line following robots – white surfaces reflect much more light than black, so, when directed towards a white surface, the voltage output will be lower than that on a black surface.
The power input and analog output pins are brought out to a 3-pin, 0.1″ pitch header. The board also has a single mounting hole if you want to screw the board onto something.
Features
* 5VDC operating voltage
* 25mA supply current
* Optimal sensing distance: 0.125″ (3mm)
* 0.30 x 0.55 “ (7.62 x 13.97 mm)
Common Reflectance Sensor
The QRE1113 is a common reflectance sensor often used in robotic line followers. The sensor works by shining an IR LED down and seeing how much of that light bounces back using a phototransistor. Because dark colors will bounce back less of the light, the sensor can be used to tell the difference between white and black areas. So an array of these can be used to help a robot determine where a dark line is on the ground so it can follow it. But they can also be used to determine proximity under an inch.
The an analog input on your microcontroller but still need an analog reading of how much light was reflected. It does this by allowing you to charge a capacitor on the board, and then timing how long it takes to discharge. The more light that is reflected, the less time it takes to discharge the capacitor. Hooking the QRE1113 to your Arduino is very simple. It just needs power (5V), ground, and an analog pin.
DonLuc1807Mk11
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x Line Sensor Breakout – QRE1113 (Analog)
3 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
CRS – Analog 0
GND – GND
VIN – +5V
DonLuc1807Mk11p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – Line Sensor Breakout – Mk07 // 7-11 // DonLuc1807Mk10p 7-11 // RGB LCD Shield // QRE1113 (Analog) // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // Seven-Segment Display int iQRE1113 = A0; // iQRE1113 int iQRE1113Value = 0; // iQRE1113Value void loop() { // QRE1113 (Analog) isCRS(); delay(2000); // Clear RGBLCDShield.clear(); }
getSeven.ino
// Line Sensor Breakout - QRE1113 void isCRS() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("QRE1113 (Analog)"); // Line Sensor Breakout - QRE1113 iQRE1113Value = analogRead(iQRE1113); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iQRE1113 = "); // iQRE1113 RGBLCDShield.print( iQRE1113Value ); // iQRE1113Value }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("QRE1113 (Analog)"); // Seven-Segment Display delay(5000); // Clear RGBLCDShield.clear(); }
Don Luc
Project #7: RGB LCD Shield – Seven-Segment Display – Mk06
Seven-Segment Display
A seven-segment display (SSD), or seven-segment indicator, is a form of electronic display device for displaying decimal numerals that is an alternative to the more complex dot matrix displays.
Seven-segment displays are widely used in digital clocks, electronic meters, basic calculators, and other electronic devices that display numerical information.
Your basic 7-segment LED. Common anode. Two decimal points, but only the one on the right is wired. Digit height is 0.6″. Overall height is 1″.
Common Cathode
In a common-cathode display, the positive terminal of all the eight LEDs are connected together and then connected to iSeven2 and iSeven8. To turn on an individual segment, you ground one of the pins. The following diagram shows the internal structure of the common-cathode seven-segment display.
The internal structure of both types is nearly the same. The difference is the polarity of the LEDs and common terminal. In a common cathode seven-segment display, all seven LEDs plus a dot LED have the cathodes connected To use this display, we need to connect VIN to make the individual segments light up. The following diagram shows the internal structure of common-cathode seven-segment display.
If your Arduino application only needs to display numbers, consider using a seven-segment display. The severn-segment display has seven LEDs arranged in the shape of number eight. They are easy to use and cost effective. The picture below shows a typical seven-segment display.
DonLuc1807Mk10
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x Seven-Segment Display Red
7 x 220 ohm resistor
4 x Jumper Wires 3″ M/M
8 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
7S8 – Digital 8
7S7 – Digital 7
7S6 – Digital 6
7S5 – Digital 5
7S4 – Digital 4
7S3 – Digital 3
7S2 – Digital 2
VIN – +5V
DonLuc1807Mk10p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – Seven-Segment Display – Mk06 // 7-10 // DonLuc1807Mk10p 7-10 // RGB LCD Shield // Seven-Segment Display // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // Seven-Segment Display int iSeven2 = 2; // iSeven2 int iSeven3 = 3; // iSeven3 int iSeven4 = 4; // iSeven4 int iSeven5 = 5; // iSeven5 int iSeven6 = 6; // iSeven6 int iSeven7 = 7; // iSeven7 int iSeven8 = 8; // iSeven8 void loop() { // Seven-Segment Display isSeven(); // Clear RGBLCDShield.clear(); }
getSeven.ino
// Seven-Segment Display void isSeven() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Seven-Segment"); // Seven-Segment Display // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven2 + "); // iSeven2 + digitalWrite(iSeven2, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven2 - "); // iSeven2 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven3 + "); // iSeven3 + digitalWrite(iSeven3, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven3 - "); // iSeven3 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven4 + "); // iSeven4 + digitalWrite(iSeven4, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven4 - "); // iSeven4 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven5 + "); // iSeven5 + digitalWrite(iSeven5, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven5 - "); // iSeven5 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven6 + "); // iSeven6 + digitalWrite(iSeven6, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven6 - "); // iSeven6 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven7 + "); // iSeven7 + digitalWrite(iSeven7, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven7 - "); // iSeven7 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven8 + "); // iSeven8 + digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven8 - "); // iSeven8 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 0 "); // iSeven 0 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven6, LOW); digitalWrite(iSeven7, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 1 "); // iSeven 1 digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 2 "); // iSeven 2 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven6, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 3 "); // iSeven 3 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 4 "); // iSeven 4 digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 5 "); // iSeven 5 digitalWrite(iSeven2, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 6 "); // iSeven 6 digitalWrite(iSeven2, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven6, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 7 "); // iSeven 7 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 8 "); // iSeven 8 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven6, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 9 "); // iSeven 9 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); } // Seven - Off void isSevOff() { // Seven - Off digitalWrite(iSeven2, HIGH); digitalWrite(iSeven3, HIGH); digitalWrite(iSeven4, HIGH); digitalWrite(iSeven5, HIGH); digitalWrite(iSeven6, HIGH); digitalWrite(iSeven7, HIGH); digitalWrite(iSeven8, HIGH); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven-Segment"); // Seven-Segment Display delay(5000); // Clear RGBLCDShield.clear(); // Seven-Segment Display pinMode(iSeven2, OUTPUT); // iSeven2 pinMode(iSeven3, OUTPUT); // iSeven3 pinMode(iSeven4, OUTPUT); // iSeven4 pinMode(iSeven5, OUTPUT); // iSeven5 pinMode(iSeven6, OUTPUT); // iSeven6 pinMode(iSeven7, OUTPUT); // iSeven7 pinMode(iSeven8, OUTPUT); // iSeven8 isSevOff(); // Seven - Off }
Don Luc
Project #7: RGB LCD Shield – LED RGB – Mk05
LED RGB
LED RGB are tri-color LEDs with red, green, and blue emitters, in general using a four-wire connection with one common lead (anode or cathode). These LEDs can have either common positive leads in the case of a common anode LED, or common negative leads in the case of a common cathode LED. Others, however, have only two leads (positive and negative) and have a built-in electronic control unit.
LED RGB (Red-Green-Blue) are actually three LEDs in one! But that doesn’t mean it can only make three colors. Because red, green, and blue are the additive primary colors, you can control the intensity of each to create every color of the rainbow. Most RGB LEDs have four pins: one for each color, and a common pin. On some, the common pin is the anode, and on others, it’s the cathode.
Circuit Schematics (Common Cathode)
The cathode will be connected to the VIN and will be connected through 330 Ohms resistor. We will use PWM for simulating analog output which will provide different voltage levels to the LEDs so we can get the desired colors. We will use PWM for simulating analog output which will provide different voltage levels to the LEDs so we can get the desired colors.
Source Code
I will use the pins number 4, 3 and 2 and I will name them iRed, iGreen and iBlue. In the setup section we need to define them as outputs. At the bottom of the sketch we have this custom made function named setColor() which takes 3 different arguments red, green and blue. These arguments represents the brightness of the LEDs or the duty cycle of the PWM signal which is created using the analogWrite() function. These values can vary from 0 to 255 which represents 100 % duty cycle of the PWM signal or maximum LED brightness.
So now in the loop function we will make our program which will change the color of the LED each 2 second. In order to get red light on the LED we will call the setColor() function and set value of 255 for the iRed argument and 0 for the two others. Respectively we can get the two other basic colors, green and blue.
DonLuc1807Mk09
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x LED RGB (NSTM515AS)
1 x 330 ohm resistor
4 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
Red – Digital 4
Gre – Digital 3
Blu – Digital 2
VIN – +5V
DonLuc1807Mk09p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – LED RGB – Mk05 // 7-9 // DonLuc1807Mk09p 7-9 // RGB LCD Shield // LED RGB // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // LED RGB #define COMMON_ANODE int iBlue = 2; int iGreen = 3; int iRed = 4; void loop() { // LED RGB isColor(); delay(500); // Clear RGBLCDShield.clear(); }
getColor.ino
// LED RGB void isColor() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("LED RGB"); // LED RGB // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Red "); // Red setColor(255, 0, 0); // Red Color delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Green "); // Green setColor(0, 255, 0); // Green Color delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Blue "); // Blue setColor(0, 0, 255); // Blue Color delay(2000); } void setColor(int red, int green, int blue) { #ifdef COMMON_ANODE red = 255 - red; green = 255 - green; blue = 255 - blue; #endif analogWrite(iRed, red); analogWrite(iGreen, green); analogWrite(iBlue, blue); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("LED RGB"); // LED RGB delay(5000); // Clear RGBLCDShield.clear(); // LED RGB pinMode(iBlue, OUTPUT); // Blue pinMode(iGreen, OUTPUT); // Green pinMode(iRed, OUTPUT); // Red }
Don Luc
Project #7: RGB LCD Shield – IR Emitters and Detectors – Mk04
Infrared Emitters and Detectors
Side-looking Infrared Emitters and IR Detectors. These simple devices operate at 940nm and work well for generic IR systems including remote control and touch-less object sensing. Using a simple ADC on any microcontroller will allow variable readings to be collected from the detector. The emitter is driven up to 50mA with a current limiting resistor as with any LED device. The detect is a NPN transistor that is biased by incoming IR light.
Sold as a pair, with one Emitter and one Detector.
IR Emitter
Connect IR LED using a 270 ohm series resistor to the +5 supply (or to an Arduino pin if you want to switch the source on and off). Current draw is about 11 mA with a 270 ohm resistor. Current runs from anode to cathode. Flat on the case marks the cathode. To determine if the IR LED is the right way around.
IR Detector
A IR Detector is just like a regular transistor except the base lead is disabled or absent and light activates base current. The flat on the case marks the collector, the other lead is the emitter. Connect the collector to one end of a 10K ohm resistor and connect the other end of the resistor to a +5V supply (you can use the +5 pin on the Arduino). Connect the emitter to ground. The voltage should start out at +5V. When pointing the IR Detector, the voltage should drop down to near zero. To interface with the Arduino, make a second connection from the collector to an Arduino pin.
DonLuc1807Mk08
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x IR Emitter
1 x IR Detector
1 x 270 ohm resistor
1 x 10k ohm resistor
3 x Jumper Wires 3″ M/M
4 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
Det – Analog A0
Emi – Digital 2
VIN – +5V
GND – GND
DonLuc1807Mk08p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – IR Emitters and Detectors – Mk04 // 7-8 // DonLuc1807Mk08p 7-8 // RGB LCD Shield // IR Emitters and Detectors // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // IR Emitters and Detectors int iDet = 2; int iSense = A0; int iVal; void loop() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("IR Emi - Det"); // IR Emitters and Detectors // IR Emitters and Detectors iVal = analogRead(iSense); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); if ( iVal >= 1005 ) { RGBLCDShield.print("Alarm"); // Alarm } else { RGBLCDShield.print("No"); // No } delay(1000); // Clear RGBLCDShield.clear(); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("IR Emi - Det"); // IR Emitters and Detectors delay(5000); // Clear RGBLCDShield.clear(); // IR Emitters and Detectors pinMode(iDet, OUTPUT); pinMode(iSense, INPUT); digitalWrite(iDet,HIGH); }
Don Luc