SparkFun
SparkFun
Project #7: RGB LCD Shield – MCP4131 – Mk10
Microchip Technology Inc – MCP4131
Features:
-7-bit: 128 Resistors with 129 Taps to VSS and VDD
-SPI compatible interface
-Automatic Recall of Potentiometer Wiper Settings Resistance Values: 5k Ohm, 10k Ohm, 50k Ohm, 100k Ohm
-Absolute (Rheostat): <100 ppm (typ.)
-Ratiometric (Potentiometer): <10 ppm (typ.)
Device Overview – Summary
The MCP41/423X devices are volatile, 7-bit (129 wiper steps) digital potentiometers with an SPI compatible interface. The MCP41/42XX family is available with end-to-end resistor values of 5K Ohm, 10K Ohm, 50k Ohm and 100K Ohm. These devices offer a variety of configurations simplifying design while minimizing cost, package size and pin count.
Additional Features
-7-bit: 128 Resistors with 129 Taps to VSS and VDD
-SPI compatible interface
-Automatic Recall of Potentiometer Wiper Settings Resistance Values: 5k Ohm, 10k Ohm, 50k Ohm, 100k Ohm
-Low Tempco: Absolute (Rheostat): <100 ppm (typ.)
-Ratiometric (Potentiometer): <10 ppm (typ.)
-Low Wiper Resistance: 100 Ohm (typ.)
-Low-Power Operation: 1µA Max Static Current
-Wide Operating Voltage: 1.8V to 5.5V
-Extended Temperature Range: -40°C to +125°C
MCP4131 – Digital Potentiometer – 10K
Potentiometers are incredibly useful, whether you’re controlling the volume on your stereo or the ‘mood lighting’ in your room. The problem with traditional potentiometers is the fact that your microcontroller doesn’t have an easy way to interface with them. Digital potentiometers solve that problem by allowing you to control a voltage splitter with digital signals.
Wire it up just like a potentiometer and use serial signals to ‘turn the knob’. Another handy feature of digital potentiometers is that because they aren’t controlled mechanically, they don’t have a pre-determined sweep profile. In other words, depending on the way you write your code the potentiometer can ‘sweep’ in a linear fashion, a logarithmic fashion, or according to any other profile you like. Digital potentiometers can also be used in conjunction with rotary encoders to consolidate large banks of potentiometers into one ‘smart’ rotary control.
Digital Potentiometer MCP41131 and Arduino
We know the analog potentiometer, is a three-terminal resistor with a sliding contact that forms an adjustable voltage divider. Potentiometers many application such like:
1- Volume controls on audio equipment
2- Control the amplifier gain and offset
3- Transducer displacement transducers
Many other application, but did you want to control the resistance value by Arduino instead of using analog one. Analog potentiometers have some problem with Arduino doesn’t have an easy way to interface with them. The digital potentiometer, give you an ability to adjust the resistance, allowing you to control a voltage splitter with digital signals. This IC using SPI Protocol to communicate with Arduino.
DonLuc1808Mk03
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x MCP4131
1 x LED Green
1 x 270 Ohm Resistance
1 x NeoPixel Stick – 8 x 5050 RGB LED
1 x 100K Potentiometer
1 x Black Knob
7 x Jumper Wires 3″ M/M
12 x Jumper Wires 6″ M/M
1 x Full-Size Breadboard
1 x USB Cable A to B
Arduino UNO
MC1 – Digital 13
MC2 – Digital 11
MC3 – Digital 10
LR1 – Digital 3
POT – Analog 1
GND – GND
VIN – +5V
DonLuc1808Mk03p.ino
// ***** Don Luc Electronics ***** // Software Version Information // Project #7: RGB LCD Shield – MCP4131 – Mk10 // 8-03 // DonLuc1808Mk03p 8-03 // RGB LCD Shield // MCP4131 // Include Library Code #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> #include <Adafruit_NeoPixel.h> #include <SPI.h> // RGB LCD Shield Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // NeoPixels #define PIN 3 // On digital pin 3 #define NUMPIXELS 8 // NeoPixels NUMPIXELS = 8 Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800); int red = 0; // Red int green = 0; // Green int blue = 0; // Blue int iNeo = 0; // Neopix const int iBriPin = A1; // Panel Mount 1K potentiometer Brightneed int iBri = 0; // Neopix Brightness int iBriMin = 1023; // Brightneed minimum sensor value int iBriMax = 0; // Brightneed maximun sensor value int z = 0; // Value // MCP4131 int pinCS = 10; // MCP4131 byte address = 0x00; // Address int i = 0; // Value void loop() { // MCP4131 isMCP4131(); delay(1000); // Clear RGBLCDShield.clear(); }
getMCP4131.ino
// MCP4131 void isMCP4131() { // NeoPixels isNUMPIXELSoff(); // isNUMPIXELSoff // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("MCP4131"); // MCP4131 // MCP4131 // Move the potentiometer in one direction for ( i = 0; i <= 128; i++) { isNUMPIXELSoff(); // isNUMPIXELSoff MCP4131PotWrite(i); isNUMPIXELS(); // isNUMPIXELS delay(100); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Level = "); // MCP4131 RGBLCDShield.print(i); // MCP4131 } delay(2000); // wait a couple seconds // Now mover potentiometer in other directions for ( i = 128; i >= 0; i--) { isNUMPIXELSoff(); // isNUMPIXELSoff MCP4131PotWrite(i); isNUMPIXELS(); // isNUMPIXELS delay(100); RGBLCDShield.setCursor(0, 1); RGBLCDShield.print(" "); RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Level = "); // MCP4131 RGBLCDShield.print(i); // MCP4131 } delay(2000); } // MCP4131PotWrite int MCP4131PotWrite(int value) { digitalWrite(pinCS, LOW); // pinCS Off SPI.transfer(address); // SPI Address SPI.transfer(value); // SPI Value digitalWrite(pinCS, HIGH); // pinCS On }
neopix.ino
// NeoPixels void neopix() { // Brightness iBri = analogRead(iBriPin); // iBri apply the calibration to the sensor reading iBri = map(iBri, iBriMin, iBriMax, 0, 255); // iBri in case the sensor value is outside the range seen during calibration iBri = constrain(iBri, 0, 255); pixels.setBrightness( iBri ); // Pixels.Color takes RGB values, from 0,0,0 up to 255,255,255 pixels.setPixelColor( iNeo, pixels.Color(red,green,blue) ); // This sends the updated pixel color to the hardware pixels.show(); // Delay for a period of time (in milliseconds) delay(50); } // isNUMPIXELS void isNUMPIXELS() { // Neopix Value z = ( i / 16 ); // Value // Neopix Value switch ( z ) { case 0: // NeoPixels // Green for(int y=0; y<=0; y++) { red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 1: // Green // NeoPixels for(int y=0; y<=1; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 2: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 3: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Yellow for(int y=3; y<=3; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 4: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Yellow for(int y=3; y<=4; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 5: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Yellow for(int y=3; y<=5; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 6: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Yellow for(int y=3; y<=5; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Red for(int y=6; y<=6; y++){ red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 7: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Yellow for(int y=3; y<=5; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Red for(int y=6; y<=7; y++){ red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 8: // NeoPixels // Green for(int y=0; y<=2; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Yellow for(int y=3; y<=5; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Red for(int y=6; y<=7; y++){ red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; } } // isNUMPIXELSoff void isNUMPIXELSoff() { // Black // NeoPixels for(int y=0; y < NUMPIXELS; y++) { red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("MCP4131"); // MCP4131 delay(5000); // Clear RGBLCDShield.clear(); // NeoPixels pixels.begin(); // This initializes the NeoPixel library // NeoPixels isNUMPIXELSoff(); // isNUMPIXELSoff // MCP4131 pinMode(pinCS, OUTPUT); // MCP4131 OUTPUT SPI.begin(); // SPI }
Don Luc
Project #7: RGB LCD Shield – Rotary Switch – Mk08
Rotary Switch – 10 Position
This is a single pole, 10 position rotary switch able to select up to 10 different states in a durable package. Unlike our other rotary switch, this model is much more robust and capable of handling larger currents and voltages.
With a max voltage rating of 125VAC at 0.3A and a dielectric strength of 250VAC for 1 minute this is a serious little rotary switch capable of working with some of your bigger projects. Though this switch requires you to use 11 pins and is not breadboard friendly we do offer a breakout board (found in the Recommended Products section below) to provide easier access to its capabilities.
1 x Rotary Switch – 10 Position
1 x Hex Nut
2 x Washer
Rating: 0.3A/125VAC
Contact Resistance: 50M Ohm max
Insulation Resistance: 100M Ohm @ 500VDC min
Dielectric Strength: 250VAC for 1 minute
Rotation torque: 1.0+0.5KG/cm
Shaft: 3/8″
Rotary Switch Breakout
This is the SparkFun Rotary Switch Breakout, a very simple board designed to easily provide you access to each pin on our 10-position rotary switches. This breakout allows you to easily add a rotary switch to your next project without having to worry about attaching its unique footprint to a custom board or solderless breadboard. All you need to do is solder the 10-position rotary switch into the breakout (using the silkscreen on the board as a guide) and each pin will become available for breadboard or hookup wire compatibility.
Each one of these boards breaks out the common ( C ), 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 positions on the board into 0.1″ spaced pins.
NeoPixel Stick – 8 x 5050 RGB LED
Make your own little LED strip arrangement with this stick of NeoPixel LEDs. We crammed 8 of the tiny 5050 (5mm x 5mm) smart RGB LEDs onto a PCB with mounting holes and a chainable design. Use only one microcontroller pin to control as many as you can chain together! Each LED is addressable as the driver chip is inside the LED. Each one has ~18mA constant current drive so the color will be very consistent even if the voltage varies, and no external choke resistors are required making the design slim. Power the whole thing with 5VDC (4-7V works) and you’re ready to rock.
DonLuc1808Mk01
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x Rotary Switch – 10 Position
1 x Rotary Switch Breakout
1 x Black Knob
1 x NeoPixel Stick – 8 x 5050 RGB LED
1 x 100K Potentiometer
1 x Black Knob
11 x 1K Ohm Resistance
17 x Jumper Wires 3″ M/M
6 x Jumper Wires 6″ M/M
1 x Size Breadboard
1 x USB Cable A to B
Arduino UNO
NEO – Digital 0
ROT – Analog 1
POT – Analog 0
GND – GND
VIN – +5V
DonLuc1808Mk01p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – Rotary Switch – Mk08 // 8-01 // DonLuc1808Mk01p 8-01 // RGB LCD Shield // Rotary Switch // Include Library Code #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> #include <Adafruit_NeoPixel.h> // RGB LCD Shield Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // NeoPixels #define PIN 0 // On digital pin 3 #define NUMPIXELS 8 // NeoPixels NUMPIXELS = 8 Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800); int red = 0; // Red int green = 0; // Green int blue = 0; // Blue int iNeo = 0; // Neopix const int iBriPin = A0; // Panel Mount 1K potentiometer Brightneed int iBri = 0; // Neopix Brightness int iBriMin = 1023; // Brightneed minimum sensor value int iBriMax = 0; // Brightneed maximun sensor value // Rotary Switch // Rotary Switch - 10 Position // Number = 1 => 10 int iRotNum = A1; // Rotary Switch int iVal = 0; // iVal - Value int z = 0; // Number void loop() { // Rotary Switch isRot(); delay(1000); // Clear RGBLCDShield.clear(); }
getRot.ino
// Rotary Switch void isRot() { // NeoPixels for(int y=0; y < NUMPIXELS; y++) { // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Rotary Switch"); // Rotary Switch // Rotary Switch z = analogRead( iRotNum ); // Rotary Switch iVal = ( z / 100 ); // Rotary Value // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iVal = "); // Rotary Value RGBLCDShield.print( iVal + 1 ); // Range Value switch ( iVal ) { case 0: // Red // NeoPixels for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 1: // Green // NeoPixels for(int y=0; y<NUMPIXELS; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 2: // Blue // NeoPixels for(int y=0; y<NUMPIXELS; y++){ red = 0; // Red green = 0; // Green blue = 255; // Blue iNeo = y; // Neopix neopix(); } break; case 3: // White // NeoPixels for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 255; // Green blue = 255; // Blue iNeo = y; // Neopix neopix(); } break; case 4: // NeoPixels // Red for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } delay( 2000 ); // Green for(int y=0; y<NUMPIXELS; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } delay( 2000 ); // Blue for(int y=0; y<NUMPIXELS; y++){ red = 0; // Red green = 0; // Green blue = 255; // Blue iNeo = y; // Neopix neopix(); } break; case 5: // NeoPixels // Yellow for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 6: // NeoPixels // Orange for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 102; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 7: // NeoPixels // Violet for(int y=0; y<NUMPIXELS; y++){ red = 204; // Red green = 102; // Green blue = 204; // Blue iNeo = y; // Neopix neopix(); } break; case 8: // NeoPixels // Red red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = 0; // Neopix neopix(); delay( 1000 ); // Green red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = 1; // Neopix neopix(); delay( 1000 ); // Blue red = 0; // Red green = 0; // Green blue = 255; // Blue iNeo = 2; // Neopix neopix(); delay( 1000 ); // White red = 255; // Red green = 255; // Green blue = 255; // Blue iNeo = 3; // Neopix neopix(); delay( 1000 ); // Pink red = 255; // Red green = 153; // Green blue = 203; // Blue iNeo = 4; // Neopix neopix(); delay( 1000 ); // Orange red = 255; // Red green = 102; // Green blue = 0; // Blue iNeo = 5; // Neopix neopix(); delay( 1000 ); // Violet red = 204; // Red green = 102; // Green blue = 204; // Blue iNeo = 6; // Neopix neopix(); delay( 1000 ); // Yellow red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = 7; // Neopix neopix(); delay( 1000 ); break; case 9: // NeoPixels // Red red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = 7; // Neopix neopix(); delay( 1000 ); // Green red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = 6; // Neopix neopix(); delay( 1000 ); // Blue red = 0; // Red green = 0; // Green blue = 255; // Blue iNeo = 5; // Neopix neopix(); delay( 1000 ); // White red = 255; // Red green = 255; // Green blue = 255; // Blue iNeo = 4; // Neopix neopix(); delay( 1000 ); // Pink red = 255; // Red green = 153; // Green blue = 203; // Blue iNeo = 3; // Neopix neopix(); delay( 1000 ); // Orange red = 255; // Red green = 102; // Green blue = 0; // Blue iNeo = 2; // Neopix neopix(); delay( 1000 ); // Violet red = 204; // Red green = 102; // Green blue = 204; // Blue iNeo = 1; // Neopix neopix(); delay( 1000 ); // Yellow red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = 0; // Neopix neopix(); delay( 1000 ); break; } }
neopix.ino
// NeoPixels void neopix() { // Brightness iBri = analogRead(iBriPin); // iBri apply the calibration to the sensor reading iBri = map(iBri, iBriMin, iBriMax, 0, 255); // iBri in case the sensor value is outside the range seen during calibration iBri = constrain(iBri, 0, 255); pixels.setBrightness( iBri ); // Pixels.Color takes RGB values, from 0,0,0 up to 255,255,255 pixels.setPixelColor( iNeo, pixels.Color(red,green,blue) ); // This sends the updated pixel color to the hardware pixels.show(); // Delay for a period of time (in milliseconds) delay(50); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Rotary Switch"); // Rotary Switch delay(5000); // Clear RGBLCDShield.clear(); // NeoPixels pixels.begin(); // This initializes the NeoPixel library // NeoPixels for(int y=0; y < NUMPIXELS; y++) { // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } }
Don Luc
Project #7: RGB LCD Shield – Line Sensor Breakout – Mk07
Line Sensor Breakout – QRE1113 (Analog)
Description
This version of the QRE1113 breakout board features an easy-to-use analog output, which will vary depending on the amount of IR light reflected back to the sensor. This tiny board is perfect for line sensing applications and can be used in both 3.3V and 5V systems.
The board’s QRE1113 IR reflectance sensor is comprised of two parts – an IR emitting LED and an IR sensitive phototransistor. When you apply power to the VCC and GND pins the IR LED inside the sensor will illuminate. A 100 Ohm resistor is on-board and placed in series with the LED to limit current. A 10k Ohm resistor pulls the output pin high, but when the light from the LED is reflected back onto the phototransistor the output will begin to go lower. The more IR light sensed by the phototransistor, the lower the output voltage of the breakout board.
These sensors are widely used in line following robots – white surfaces reflect much more light than black, so, when directed towards a white surface, the voltage output will be lower than that on a black surface.
The power input and analog output pins are brought out to a 3-pin, 0.1″ pitch header. The board also has a single mounting hole if you want to screw the board onto something.
Features
* 5VDC operating voltage
* 25mA supply current
* Optimal sensing distance: 0.125″ (3mm)
* 0.30 x 0.55 “ (7.62 x 13.97 mm)
Common Reflectance Sensor
The QRE1113 is a common reflectance sensor often used in robotic line followers. The sensor works by shining an IR LED down and seeing how much of that light bounces back using a phototransistor. Because dark colors will bounce back less of the light, the sensor can be used to tell the difference between white and black areas. So an array of these can be used to help a robot determine where a dark line is on the ground so it can follow it. But they can also be used to determine proximity under an inch.
The an analog input on your microcontroller but still need an analog reading of how much light was reflected. It does this by allowing you to charge a capacitor on the board, and then timing how long it takes to discharge. The more light that is reflected, the less time it takes to discharge the capacitor. Hooking the QRE1113 to your Arduino is very simple. It just needs power (5V), ground, and an analog pin.
DonLuc1807Mk11
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x Line Sensor Breakout – QRE1113 (Analog)
3 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
CRS – Analog 0
GND – GND
VIN – +5V
DonLuc1807Mk11p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – Line Sensor Breakout – Mk07 // 7-11 // DonLuc1807Mk10p 7-11 // RGB LCD Shield // QRE1113 (Analog) // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // Seven-Segment Display int iQRE1113 = A0; // iQRE1113 int iQRE1113Value = 0; // iQRE1113Value void loop() { // QRE1113 (Analog) isCRS(); delay(2000); // Clear RGBLCDShield.clear(); }
getSeven.ino
// Line Sensor Breakout - QRE1113 void isCRS() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("QRE1113 (Analog)"); // Line Sensor Breakout - QRE1113 iQRE1113Value = analogRead(iQRE1113); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iQRE1113 = "); // iQRE1113 RGBLCDShield.print( iQRE1113Value ); // iQRE1113Value }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("QRE1113 (Analog)"); // Seven-Segment Display delay(5000); // Clear RGBLCDShield.clear(); }
Don Luc
Project #7: RGB LCD Shield – Seven-Segment Display – Mk06
Seven-Segment Display
A seven-segment display (SSD), or seven-segment indicator, is a form of electronic display device for displaying decimal numerals that is an alternative to the more complex dot matrix displays.
Seven-segment displays are widely used in digital clocks, electronic meters, basic calculators, and other electronic devices that display numerical information.
Your basic 7-segment LED. Common anode. Two decimal points, but only the one on the right is wired. Digit height is 0.6″. Overall height is 1″.
Common Cathode
In a common-cathode display, the positive terminal of all the eight LEDs are connected together and then connected to iSeven2 and iSeven8. To turn on an individual segment, you ground one of the pins. The following diagram shows the internal structure of the common-cathode seven-segment display.
The internal structure of both types is nearly the same. The difference is the polarity of the LEDs and common terminal. In a common cathode seven-segment display, all seven LEDs plus a dot LED have the cathodes connected To use this display, we need to connect VIN to make the individual segments light up. The following diagram shows the internal structure of common-cathode seven-segment display.
If your Arduino application only needs to display numbers, consider using a seven-segment display. The severn-segment display has seven LEDs arranged in the shape of number eight. They are easy to use and cost effective. The picture below shows a typical seven-segment display.
DonLuc1807Mk10
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x Seven-Segment Display Red
7 x 220 ohm resistor
4 x Jumper Wires 3″ M/M
8 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
7S8 – Digital 8
7S7 – Digital 7
7S6 – Digital 6
7S5 – Digital 5
7S4 – Digital 4
7S3 – Digital 3
7S2 – Digital 2
VIN – +5V
DonLuc1807Mk10p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – Seven-Segment Display – Mk06 // 7-10 // DonLuc1807Mk10p 7-10 // RGB LCD Shield // Seven-Segment Display // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // Seven-Segment Display int iSeven2 = 2; // iSeven2 int iSeven3 = 3; // iSeven3 int iSeven4 = 4; // iSeven4 int iSeven5 = 5; // iSeven5 int iSeven6 = 6; // iSeven6 int iSeven7 = 7; // iSeven7 int iSeven8 = 8; // iSeven8 void loop() { // Seven-Segment Display isSeven(); // Clear RGBLCDShield.clear(); }
getSeven.ino
// Seven-Segment Display void isSeven() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Seven-Segment"); // Seven-Segment Display // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven2 + "); // iSeven2 + digitalWrite(iSeven2, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven2 - "); // iSeven2 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven3 + "); // iSeven3 + digitalWrite(iSeven3, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven3 - "); // iSeven3 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven4 + "); // iSeven4 + digitalWrite(iSeven4, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven4 - "); // iSeven4 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven5 + "); // iSeven5 + digitalWrite(iSeven5, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven5 - "); // iSeven5 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven6 + "); // iSeven6 + digitalWrite(iSeven6, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven6 - "); // iSeven6 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven7 + "); // iSeven7 + digitalWrite(iSeven7, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven7 - "); // iSeven7 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven8 + "); // iSeven8 + digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven8 - "); // iSeven8 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 0 "); // iSeven 0 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven6, LOW); digitalWrite(iSeven7, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 1 "); // iSeven 1 digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 2 "); // iSeven 2 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven6, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 3 "); // iSeven 3 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 4 "); // iSeven 4 digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 5 "); // iSeven 5 digitalWrite(iSeven2, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 6 "); // iSeven 6 digitalWrite(iSeven2, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven6, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 7 "); // iSeven 7 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 8 "); // iSeven 8 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven6, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 9 "); // iSeven 9 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); } // Seven - Off void isSevOff() { // Seven - Off digitalWrite(iSeven2, HIGH); digitalWrite(iSeven3, HIGH); digitalWrite(iSeven4, HIGH); digitalWrite(iSeven5, HIGH); digitalWrite(iSeven6, HIGH); digitalWrite(iSeven7, HIGH); digitalWrite(iSeven8, HIGH); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven-Segment"); // Seven-Segment Display delay(5000); // Clear RGBLCDShield.clear(); // Seven-Segment Display pinMode(iSeven2, OUTPUT); // iSeven2 pinMode(iSeven3, OUTPUT); // iSeven3 pinMode(iSeven4, OUTPUT); // iSeven4 pinMode(iSeven5, OUTPUT); // iSeven5 pinMode(iSeven6, OUTPUT); // iSeven6 pinMode(iSeven7, OUTPUT); // iSeven7 pinMode(iSeven8, OUTPUT); // iSeven8 isSevOff(); // Seven - Off }
Don Luc
Project #7: RGB LCD Shield – LED RGB – Mk05
LED RGB
LED RGB are tri-color LEDs with red, green, and blue emitters, in general using a four-wire connection with one common lead (anode or cathode). These LEDs can have either common positive leads in the case of a common anode LED, or common negative leads in the case of a common cathode LED. Others, however, have only two leads (positive and negative) and have a built-in electronic control unit.
LED RGB (Red-Green-Blue) are actually three LEDs in one! But that doesn’t mean it can only make three colors. Because red, green, and blue are the additive primary colors, you can control the intensity of each to create every color of the rainbow. Most RGB LEDs have four pins: one for each color, and a common pin. On some, the common pin is the anode, and on others, it’s the cathode.
Circuit Schematics (Common Cathode)
The cathode will be connected to the VIN and will be connected through 330 Ohms resistor. We will use PWM for simulating analog output which will provide different voltage levels to the LEDs so we can get the desired colors. We will use PWM for simulating analog output which will provide different voltage levels to the LEDs so we can get the desired colors.
Source Code
I will use the pins number 4, 3 and 2 and I will name them iRed, iGreen and iBlue. In the setup section we need to define them as outputs. At the bottom of the sketch we have this custom made function named setColor() which takes 3 different arguments red, green and blue. These arguments represents the brightness of the LEDs or the duty cycle of the PWM signal which is created using the analogWrite() function. These values can vary from 0 to 255 which represents 100 % duty cycle of the PWM signal or maximum LED brightness.
So now in the loop function we will make our program which will change the color of the LED each 2 second. In order to get red light on the LED we will call the setColor() function and set value of 255 for the iRed argument and 0 for the two others. Respectively we can get the two other basic colors, green and blue.
DonLuc1807Mk09
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x LED RGB (NSTM515AS)
1 x 330 ohm resistor
4 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
Red – Digital 4
Gre – Digital 3
Blu – Digital 2
VIN – +5V
DonLuc1807Mk09p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – LED RGB – Mk05 // 7-9 // DonLuc1807Mk09p 7-9 // RGB LCD Shield // LED RGB // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // LED RGB #define COMMON_ANODE int iBlue = 2; int iGreen = 3; int iRed = 4; void loop() { // LED RGB isColor(); delay(500); // Clear RGBLCDShield.clear(); }
getColor.ino
// LED RGB void isColor() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("LED RGB"); // LED RGB // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Red "); // Red setColor(255, 0, 0); // Red Color delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Green "); // Green setColor(0, 255, 0); // Green Color delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Blue "); // Blue setColor(0, 0, 255); // Blue Color delay(2000); } void setColor(int red, int green, int blue) { #ifdef COMMON_ANODE red = 255 - red; green = 255 - green; blue = 255 - blue; #endif analogWrite(iRed, red); analogWrite(iGreen, green); analogWrite(iBlue, blue); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("LED RGB"); // LED RGB delay(5000); // Clear RGBLCDShield.clear(); // LED RGB pinMode(iBlue, OUTPUT); // Blue pinMode(iGreen, OUTPUT); // Green pinMode(iRed, OUTPUT); // Red }
Don Luc
Project #7: RGB LCD Shield – IR Emitters and Detectors – Mk04
Infrared Emitters and Detectors
Side-looking Infrared Emitters and IR Detectors. These simple devices operate at 940nm and work well for generic IR systems including remote control and touch-less object sensing. Using a simple ADC on any microcontroller will allow variable readings to be collected from the detector. The emitter is driven up to 50mA with a current limiting resistor as with any LED device. The detect is a NPN transistor that is biased by incoming IR light.
Sold as a pair, with one Emitter and one Detector.
IR Emitter
Connect IR LED using a 270 ohm series resistor to the +5 supply (or to an Arduino pin if you want to switch the source on and off). Current draw is about 11 mA with a 270 ohm resistor. Current runs from anode to cathode. Flat on the case marks the cathode. To determine if the IR LED is the right way around.
IR Detector
A IR Detector is just like a regular transistor except the base lead is disabled or absent and light activates base current. The flat on the case marks the collector, the other lead is the emitter. Connect the collector to one end of a 10K ohm resistor and connect the other end of the resistor to a +5V supply (you can use the +5 pin on the Arduino). Connect the emitter to ground. The voltage should start out at +5V. When pointing the IR Detector, the voltage should drop down to near zero. To interface with the Arduino, make a second connection from the collector to an Arduino pin.
DonLuc1807Mk08
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x IR Emitter
1 x IR Detector
1 x 270 ohm resistor
1 x 10k ohm resistor
3 x Jumper Wires 3″ M/M
4 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
Det – Analog A0
Emi – Digital 2
VIN – +5V
GND – GND
DonLuc1807Mk08p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – IR Emitters and Detectors – Mk04 // 7-8 // DonLuc1807Mk08p 7-8 // RGB LCD Shield // IR Emitters and Detectors // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // IR Emitters and Detectors int iDet = 2; int iSense = A0; int iVal; void loop() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("IR Emi - Det"); // IR Emitters and Detectors // IR Emitters and Detectors iVal = analogRead(iSense); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); if ( iVal >= 1005 ) { RGBLCDShield.print("Alarm"); // Alarm } else { RGBLCDShield.print("No"); // No } delay(1000); // Clear RGBLCDShield.clear(); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("IR Emi - Det"); // IR Emitters and Detectors delay(5000); // Clear RGBLCDShield.clear(); // IR Emitters and Detectors pinMode(iDet, OUTPUT); pinMode(iSense, INPUT); digitalWrite(iDet,HIGH); }
Don Luc
Project #9: Stepper – EasyDriver – Mk04
EasyDriver – Hook-Up
Once you have all the headers soldered on, it’s time to hook up the EasyDriver to your Arduino. Using the picture below, make all the necessary connections.
Note: The small stepper motor looks different than the one pictured. It should have a 4-pin connector on the end. This will be attached to the 4-pin male header facing upward. Because of the nature of this particular stepper, you can hook up the connector in either orientation, i.e. either the black wire on the left or the yellow wire on the left. It will work either way. If you are using a different motor, consult its documentation to find out which wires should go where.
IMPORTANT: Stepper motors require more power than can be supplied by the Arduino. In this example we will be powering the Uno with a 12V external supply. Notice that the power input (M+) on the EasyDriver is attached to the Vin pin on the Arduino. This will allow you to power both the Arduino and the motor with the same power supply.
DonLuc1807Mk07
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x EasyDriver
1 x Small Stepper Motor
1 x Pololu Mounting
3 x Jumper Wires 3″ M/M
4 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
Spe – Digital 3
Dir – Digital 2
VIN – +5V
GND – GND
DonLuc1807Mk07p.ino
// ***** Don Luc ***** // Software Version Information // Project #9: Stepper - EasyDriver - Mk04 // 7-7 // DonLuc1807Mk07p 7-7 // Stepper // EasyDriver // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // EasyDriver int dirPin = 2; // EasyDriver int stepPin = 3; // stepPin void loop() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("EasyDriver"); // EasyDriver // EasyDriver int i; // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Left"); // Left digitalWrite(dirPin, LOW); // Set the direction. delay(100); for (i = 0; i<4000; i++) // Iterate for 4000 microsteps. { digitalWrite(stepPin, LOW); // This LOW to HIGH change is what creates the digitalWrite(stepPin, HIGH); // "Rising Edge" so the easydriver knows to when to step. delayMicroseconds(500); // This delay time is close to top speed for this } // particular motor. Any faster the motor stalls. // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Right"); // Right digitalWrite(dirPin, HIGH); // Change direction. delay(2000); for (i = 0; i<4000; i++) // Iterate for 4000 microsteps { digitalWrite(stepPin, LOW); // This LOW to HIGH change is what creates the digitalWrite(stepPin, HIGH); // "Rising Edge" so the easydriver knows to when to step. delayMicroseconds(500); // This delay time is close to top speed for this } // particular motor. Any faster the motor stalls. delay(2000); // Clear RGBLCDShield.clear(); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("EasyDriver"); // EasyDriver delay(5000); // Clear RGBLCDShield.clear(); // EasyDriver pinMode(dirPin, OUTPUT); pinMode(stepPin, OUTPUT); }
Don Luc
Project #9: Stepper – EasyDriver – Mk03
Assembly
The simplest way to use the EasyDriver is to attach headers to it for easy insertion onto a breadboard. Alternatively, you could solder the wires straight to the board. These instructions will assume you are using the breadboard method.
The first step is to solder straight male headers to the EasyDriver. Very few of the actual pins on the EasyDriver will be used in this example. However, soldering headers on all the broken out pins is recommended to give the board more stability when attached to a breadboard. A simple method for this is to break off the desired amount of headers, place them in the breadboard in the appropriate locations, place the EasyDriver on top, and then solder all the connections.
DonLuc1807Mk06
2 x EasyDriver
10 x 2 Header
2 x 3 Header
2 x 4 Header
2 x Half-Size Breadboard
1 x Flux-Core Solder 60/40
1 x Fume Extractor TENMA
1 x Soldering Station TENMA
Don Luc
Project #9: Stepper – EasyDriver – Mk02
EasyDriver – Stepper Motor Driver
Description
The EasyDriver is a simple to use stepper motor driver, compatible with anything that can output a digital 0 to 5V pulse (or 0 to 3.3V pulse if you solder SJ2 closed on the EasyDriver). The EasyDriver requires a 6V to 30V supply to power the motor and can power any voltage of stepper motor. The EasyDriver has an on board voltage regulator for the digital interface that can be set to 5V or 3.3V. Connect a 4-wire stepper motor and a microcontroller and you’ve got precision motor control! EasyDriver drives bi-polar motors, and motors wired as bi-polar. I.e. 4,6, or 8 wire stepper motors.
This EasyDriver V4.5 has been co-designed with Brian Schmalz. It provides much more flexibility and control over your stepper motor, when compared to older versions. The microstep select (MS1 and MS2) pins of the A3967 are broken out allowing adjustments to the microstepping resolution. The sleep and enable pins are also broken out for further control.
Note: Do not connect or disconnect a motor while the driver is energized. This will cause permanent damage to the A3967 IC.
Note: This product is a collaboration with Brian Schmalz. A portion of each sales goes back to them for product support and continued development.
Features
* A3967 Microstepping Driver
* MS1 and MS2 pins broken out to change microstepping resolution to full, half, quarter and eighth steps (defaults to eighth)
* Compatible with 4, 6, and 8 wire stepper motors of any voltage
* Adjustable current control from 150mA/phase to 700mA/phase
* Power supply range from 6V to 30V. The higher the voltage, the higher the torque at high speeds
Don Luc
Project #9: Stepper – Mk01
Stepper Motor
A stepper motor or step motor or stepping motor is a brushless DC electric motor that divides a full rotation into a number of equal steps. The motor’s position can then be commanded to move and hold at one of these steps without any position sensor for feedback (an open-loop controller), as long as the motor is carefully sized to the application in respect to torque and speed.
Switched reluctance motors are very large stepping motors with a reduced pole count, and generally are closed-loop commutated.
Fundamentals of Operation
Brushed DC motors rotate continuously when DC voltage is applied to their terminals. The stepper motor is known by its property to convert a train of input pulses (typically square wave pulses) into a precisely defined increment in the shaft position. Each pulse moves the shaft through a fixed angle.
Stepper motors effectively have multiple “toothed” electromagnets arranged around a central gear-shaped piece of iron. The electromagnets are energized by an external driver circuit or a micro controller. To make the motor shaft turn, first, one electromagnet is given power, which magnetically attracts the gear’s teeth. When the gear’s teeth are aligned to the first electromagnet, they are slightly offset from the next electromagnet. This means that when the next electromagnet is turned on and the first is turned off, the gear rotates slightly to align with the next one. From there the process is repeated. Each of those rotations is called a “step”, with an integer number of steps making a full rotation. In that way, the motor can be turned by a precise angle.
Unipolar Motors
A unipolar stepper motor has one winding with center tap per phase. Each section of windings is switched on for each direction of magnetic field. Since in this arrangement a magnetic pole can be reversed without switching the direction of current, the commutation circuit can be made very simple (e.g., a single transistor) for each winding. Typically, given a phase, the center tap of each winding is made common: giving three leads per phase and six leads for a typical two phase motor. Often, these two phase commons are internally joined, so the motor has only five leads.
Bipolar Motors
Bipolar motors have a single winding per phase. The current in a winding needs to be reversed in order to reverse a magnetic pole, so the driving circuit must be more complicated, typically with an H-bridge arrangement (however there are several off-the-shelf driver chips available to make this a simple affair). There are two leads per phase, none are common.
Small Stepper Motor
Description
These small steppers are a great way to get things moving, especially when positioning and repeatability is a concern.
When using a current limiting driver such as the Easydriver or Big Easydriver, a 12 volt power supply can be used as long as you adjust the current level to 400mA or less. If using a non current limited driver (like a L293D or an H-bridge) you will need to lower your input voltage to keep the motor current below 400mA.
This is a bipolar motor.
Features
* Stride Angle (degrees): 7.5
* 2-Phase
* Rated Voltage: 12V
* Rated Current: 400mA
* 3mm Diameter Drive Shaft
* 4-Wire Cable Attached
* In-traction Torque: 100 g/cm
Don Luc