Program
Project #7: RGB LCD Shield – Bi-Color LED – Mk09
Bi-Color LED
Bi-color LEDs contain two different LED emitters in one case. There are two types of these. One type consists of two dies connected to the same two leads antiparallel to each other. Current flow in one direction emits one color, and current in the opposite direction emits the other color. The other type consists of two dies with separate leads for both dies and another lead for common anode or cathode so that they can be controlled independently. The most common bi-color combination is red/traditional green, however, other available combinations include amber/traditional green, red/pure green, red/blue, and blue/pure green.
Super Bright BiPolar LEDs
Package of 12 super bright Red/Green jumbo T1 3/4 5mm LEDs. These have a diffused frosted lens and 3 long leads. Prime 100% perfect and bright. CODE 7: 100% Prime Parts. Stock # GP55
DonLuc1808Mk02
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
3 x Bi-Color LED GP55
3 x 270 Ohm Resistance
3 x 330 Ohm Resistance
3 x Jumper Wires 3″ M/M
7 x Jumper Wires 6″ M/M
1 x Size Breadboard
1 x USB Cable A to B
Arduino UNO
LG3 – Digital 5
LR3 – Digital 4
LG2 – Digital 3
LR2 – Digital 2
LG1 – Digital 1
LR1 – Digital 0
GND – GND
DonLuc1808Mk02p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – Bi-Color LED – Mk09 // 8-02 // DonLuc1808Mk02p 8-02 // RGB LCD Shield // Bi-Color LED // Include Library Code #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> // RGB LCD Shield Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // Bi-Color LED int iLR1 = 0; // LED Red 1 int iLG1 = 1; // LED Green 1 int iLR2 = 2; // LED Red 2 int iLG2 = 3; // LED Green 2 int iLR3 = 4; // LED Red 3 int iLG3 = 5; // LED Green 3 void loop() { // Bi-Color LED isBiColor(); delay(1000); // Clear RGBLCDShield.clear(); }
getBiColor.ino
// Bi-Color LED void isBiColor() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Bi-Color LED"); // Bi-Color LED // Bi-Color LED // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("L1x- L2x- L3x-"); // Bi-Color LED Red digitalWrite(iLR1, HIGH); // LED Red 1 digitalWrite(iLG1, LOW); // LED Green 1 digitalWrite(iLR2, HIGH); // LED Red 2 digitalWrite(iLG2, LOW); // LED Green 2 digitalWrite(iLR3, HIGH); // LED Red 3 digitalWrite(iLG3, LOW); // LED Green 3 delay( 2000 ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("L1-x L2-x L3-x"); // Bi-Color LED Green digitalWrite(iLR1, LOW); // LED Red 1 digitalWrite(iLG1, HIGH); // LED Green 1 digitalWrite(iLR2, LOW); // LED Red 2 digitalWrite(iLG2, HIGH); // LED Green 2 digitalWrite(iLR3, LOW); // LED Red 3 digitalWrite(iLG3, HIGH); // LED Green 3 delay( 2000 ); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("L1xx L2xx L3xx"); // Bi-Color LED Red-Green digitalWrite(iLR1, HIGH); // LED Red 1 digitalWrite(iLG1, HIGH); // LED Green 1 digitalWrite(iLR2, HIGH); // LED Red 2 digitalWrite(iLG2, HIGH); // LED Green 2 digitalWrite(iLR3, HIGH); // LED Red 3 digitalWrite(iLG3, HIGH); // LED Green 3 delay( 2000 ); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Bi-Color LED"); // Bi-Color LED delay(5000); // Clear RGBLCDShield.clear(); // Bi-Color LED pinMode(iLR1, OUTPUT); // LED Red 1 pinMode(iLG1, OUTPUT); // LED Green 1 pinMode(iLR2, OUTPUT); // LED Red 2 pinMode(iLG2, OUTPUT); // LED Green 2 pinMode(iLR3, OUTPUT); // LED Red 3 pinMode(iLG3, OUTPUT); // LED Green 3 }
Don Luc
Project #7: RGB LCD Shield – Rotary Switch – Mk08
Rotary Switch – 10 Position
This is a single pole, 10 position rotary switch able to select up to 10 different states in a durable package. Unlike our other rotary switch, this model is much more robust and capable of handling larger currents and voltages.
With a max voltage rating of 125VAC at 0.3A and a dielectric strength of 250VAC for 1 minute this is a serious little rotary switch capable of working with some of your bigger projects. Though this switch requires you to use 11 pins and is not breadboard friendly we do offer a breakout board (found in the Recommended Products section below) to provide easier access to its capabilities.
1 x Rotary Switch – 10 Position
1 x Hex Nut
2 x Washer
Rating: 0.3A/125VAC
Contact Resistance: 50M Ohm max
Insulation Resistance: 100M Ohm @ 500VDC min
Dielectric Strength: 250VAC for 1 minute
Rotation torque: 1.0+0.5KG/cm
Shaft: 3/8″
Rotary Switch Breakout
This is the SparkFun Rotary Switch Breakout, a very simple board designed to easily provide you access to each pin on our 10-position rotary switches. This breakout allows you to easily add a rotary switch to your next project without having to worry about attaching its unique footprint to a custom board or solderless breadboard. All you need to do is solder the 10-position rotary switch into the breakout (using the silkscreen on the board as a guide) and each pin will become available for breadboard or hookup wire compatibility.
Each one of these boards breaks out the common ( C ), 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 positions on the board into 0.1″ spaced pins.
NeoPixel Stick – 8 x 5050 RGB LED
Make your own little LED strip arrangement with this stick of NeoPixel LEDs. We crammed 8 of the tiny 5050 (5mm x 5mm) smart RGB LEDs onto a PCB with mounting holes and a chainable design. Use only one microcontroller pin to control as many as you can chain together! Each LED is addressable as the driver chip is inside the LED. Each one has ~18mA constant current drive so the color will be very consistent even if the voltage varies, and no external choke resistors are required making the design slim. Power the whole thing with 5VDC (4-7V works) and you’re ready to rock.
DonLuc1808Mk01
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x Rotary Switch – 10 Position
1 x Rotary Switch Breakout
1 x Black Knob
1 x NeoPixel Stick – 8 x 5050 RGB LED
1 x 100K Potentiometer
1 x Black Knob
11 x 1K Ohm Resistance
17 x Jumper Wires 3″ M/M
6 x Jumper Wires 6″ M/M
1 x Size Breadboard
1 x USB Cable A to B
Arduino UNO
NEO – Digital 0
ROT – Analog 1
POT – Analog 0
GND – GND
VIN – +5V
DonLuc1808Mk01p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – Rotary Switch – Mk08 // 8-01 // DonLuc1808Mk01p 8-01 // RGB LCD Shield // Rotary Switch // Include Library Code #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> #include <Adafruit_NeoPixel.h> // RGB LCD Shield Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // NeoPixels #define PIN 0 // On digital pin 3 #define NUMPIXELS 8 // NeoPixels NUMPIXELS = 8 Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800); int red = 0; // Red int green = 0; // Green int blue = 0; // Blue int iNeo = 0; // Neopix const int iBriPin = A0; // Panel Mount 1K potentiometer Brightneed int iBri = 0; // Neopix Brightness int iBriMin = 1023; // Brightneed minimum sensor value int iBriMax = 0; // Brightneed maximun sensor value // Rotary Switch // Rotary Switch - 10 Position // Number = 1 => 10 int iRotNum = A1; // Rotary Switch int iVal = 0; // iVal - Value int z = 0; // Number void loop() { // Rotary Switch isRot(); delay(1000); // Clear RGBLCDShield.clear(); }
getRot.ino
// Rotary Switch void isRot() { // NeoPixels for(int y=0; y < NUMPIXELS; y++) { // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Rotary Switch"); // Rotary Switch // Rotary Switch z = analogRead( iRotNum ); // Rotary Switch iVal = ( z / 100 ); // Rotary Value // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iVal = "); // Rotary Value RGBLCDShield.print( iVal + 1 ); // Range Value switch ( iVal ) { case 0: // Red // NeoPixels for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 1: // Green // NeoPixels for(int y=0; y<NUMPIXELS; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 2: // Blue // NeoPixels for(int y=0; y<NUMPIXELS; y++){ red = 0; // Red green = 0; // Green blue = 255; // Blue iNeo = y; // Neopix neopix(); } break; case 3: // White // NeoPixels for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 255; // Green blue = 255; // Blue iNeo = y; // Neopix neopix(); } break; case 4: // NeoPixels // Red for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } delay( 2000 ); // Green for(int y=0; y<NUMPIXELS; y++){ red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } delay( 2000 ); // Blue for(int y=0; y<NUMPIXELS; y++){ red = 0; // Red green = 0; // Green blue = 255; // Blue iNeo = y; // Neopix neopix(); } break; case 5: // NeoPixels // Yellow for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 6: // NeoPixels // Orange for(int y=0; y<NUMPIXELS; y++){ red = 255; // Red green = 102; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } break; case 7: // NeoPixels // Violet for(int y=0; y<NUMPIXELS; y++){ red = 204; // Red green = 102; // Green blue = 204; // Blue iNeo = y; // Neopix neopix(); } break; case 8: // NeoPixels // Red red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = 0; // Neopix neopix(); delay( 1000 ); // Green red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = 1; // Neopix neopix(); delay( 1000 ); // Blue red = 0; // Red green = 0; // Green blue = 255; // Blue iNeo = 2; // Neopix neopix(); delay( 1000 ); // White red = 255; // Red green = 255; // Green blue = 255; // Blue iNeo = 3; // Neopix neopix(); delay( 1000 ); // Pink red = 255; // Red green = 153; // Green blue = 203; // Blue iNeo = 4; // Neopix neopix(); delay( 1000 ); // Orange red = 255; // Red green = 102; // Green blue = 0; // Blue iNeo = 5; // Neopix neopix(); delay( 1000 ); // Violet red = 204; // Red green = 102; // Green blue = 204; // Blue iNeo = 6; // Neopix neopix(); delay( 1000 ); // Yellow red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = 7; // Neopix neopix(); delay( 1000 ); break; case 9: // NeoPixels // Red red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = 7; // Neopix neopix(); delay( 1000 ); // Green red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = 6; // Neopix neopix(); delay( 1000 ); // Blue red = 0; // Red green = 0; // Green blue = 255; // Blue iNeo = 5; // Neopix neopix(); delay( 1000 ); // White red = 255; // Red green = 255; // Green blue = 255; // Blue iNeo = 4; // Neopix neopix(); delay( 1000 ); // Pink red = 255; // Red green = 153; // Green blue = 203; // Blue iNeo = 3; // Neopix neopix(); delay( 1000 ); // Orange red = 255; // Red green = 102; // Green blue = 0; // Blue iNeo = 2; // Neopix neopix(); delay( 1000 ); // Violet red = 204; // Red green = 102; // Green blue = 204; // Blue iNeo = 1; // Neopix neopix(); delay( 1000 ); // Yellow red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = 0; // Neopix neopix(); delay( 1000 ); break; } }
neopix.ino
// NeoPixels void neopix() { // Brightness iBri = analogRead(iBriPin); // iBri apply the calibration to the sensor reading iBri = map(iBri, iBriMin, iBriMax, 0, 255); // iBri in case the sensor value is outside the range seen during calibration iBri = constrain(iBri, 0, 255); pixels.setBrightness( iBri ); // Pixels.Color takes RGB values, from 0,0,0 up to 255,255,255 pixels.setPixelColor( iNeo, pixels.Color(red,green,blue) ); // This sends the updated pixel color to the hardware pixels.show(); // Delay for a period of time (in milliseconds) delay(50); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Rotary Switch"); // Rotary Switch delay(5000); // Clear RGBLCDShield.clear(); // NeoPixels pixels.begin(); // This initializes the NeoPixel library // NeoPixels for(int y=0; y < NUMPIXELS; y++) { // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = y; // Neopix neopix(); } }
Don Luc
Project #7: RGB LCD Shield – Line Sensor Breakout – Mk07
Line Sensor Breakout – QRE1113 (Analog)
Description
This version of the QRE1113 breakout board features an easy-to-use analog output, which will vary depending on the amount of IR light reflected back to the sensor. This tiny board is perfect for line sensing applications and can be used in both 3.3V and 5V systems.
The board’s QRE1113 IR reflectance sensor is comprised of two parts – an IR emitting LED and an IR sensitive phototransistor. When you apply power to the VCC and GND pins the IR LED inside the sensor will illuminate. A 100 Ohm resistor is on-board and placed in series with the LED to limit current. A 10k Ohm resistor pulls the output pin high, but when the light from the LED is reflected back onto the phototransistor the output will begin to go lower. The more IR light sensed by the phototransistor, the lower the output voltage of the breakout board.
These sensors are widely used in line following robots – white surfaces reflect much more light than black, so, when directed towards a white surface, the voltage output will be lower than that on a black surface.
The power input and analog output pins are brought out to a 3-pin, 0.1″ pitch header. The board also has a single mounting hole if you want to screw the board onto something.
Features
* 5VDC operating voltage
* 25mA supply current
* Optimal sensing distance: 0.125″ (3mm)
* 0.30 x 0.55 “ (7.62 x 13.97 mm)
Common Reflectance Sensor
The QRE1113 is a common reflectance sensor often used in robotic line followers. The sensor works by shining an IR LED down and seeing how much of that light bounces back using a phototransistor. Because dark colors will bounce back less of the light, the sensor can be used to tell the difference between white and black areas. So an array of these can be used to help a robot determine where a dark line is on the ground so it can follow it. But they can also be used to determine proximity under an inch.
The an analog input on your microcontroller but still need an analog reading of how much light was reflected. It does this by allowing you to charge a capacitor on the board, and then timing how long it takes to discharge. The more light that is reflected, the less time it takes to discharge the capacitor. Hooking the QRE1113 to your Arduino is very simple. It just needs power (5V), ground, and an analog pin.
DonLuc1807Mk11
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x Line Sensor Breakout – QRE1113 (Analog)
3 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
CRS – Analog 0
GND – GND
VIN – +5V
DonLuc1807Mk11p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – Line Sensor Breakout – Mk07 // 7-11 // DonLuc1807Mk10p 7-11 // RGB LCD Shield // QRE1113 (Analog) // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // Seven-Segment Display int iQRE1113 = A0; // iQRE1113 int iQRE1113Value = 0; // iQRE1113Value void loop() { // QRE1113 (Analog) isCRS(); delay(2000); // Clear RGBLCDShield.clear(); }
getSeven.ino
// Line Sensor Breakout - QRE1113 void isCRS() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("QRE1113 (Analog)"); // Line Sensor Breakout - QRE1113 iQRE1113Value = analogRead(iQRE1113); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iQRE1113 = "); // iQRE1113 RGBLCDShield.print( iQRE1113Value ); // iQRE1113Value }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("QRE1113 (Analog)"); // Seven-Segment Display delay(5000); // Clear RGBLCDShield.clear(); }
Don Luc
Project #7: RGB LCD Shield – Seven-Segment Display – Mk06
Seven-Segment Display
A seven-segment display (SSD), or seven-segment indicator, is a form of electronic display device for displaying decimal numerals that is an alternative to the more complex dot matrix displays.
Seven-segment displays are widely used in digital clocks, electronic meters, basic calculators, and other electronic devices that display numerical information.
Your basic 7-segment LED. Common anode. Two decimal points, but only the one on the right is wired. Digit height is 0.6″. Overall height is 1″.
Common Cathode
In a common-cathode display, the positive terminal of all the eight LEDs are connected together and then connected to iSeven2 and iSeven8. To turn on an individual segment, you ground one of the pins. The following diagram shows the internal structure of the common-cathode seven-segment display.
The internal structure of both types is nearly the same. The difference is the polarity of the LEDs and common terminal. In a common cathode seven-segment display, all seven LEDs plus a dot LED have the cathodes connected To use this display, we need to connect VIN to make the individual segments light up. The following diagram shows the internal structure of common-cathode seven-segment display.
If your Arduino application only needs to display numbers, consider using a seven-segment display. The severn-segment display has seven LEDs arranged in the shape of number eight. They are easy to use and cost effective. The picture below shows a typical seven-segment display.
DonLuc1807Mk10
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x Seven-Segment Display Red
7 x 220 ohm resistor
4 x Jumper Wires 3″ M/M
8 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
7S8 – Digital 8
7S7 – Digital 7
7S6 – Digital 6
7S5 – Digital 5
7S4 – Digital 4
7S3 – Digital 3
7S2 – Digital 2
VIN – +5V
DonLuc1807Mk10p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – Seven-Segment Display – Mk06 // 7-10 // DonLuc1807Mk10p 7-10 // RGB LCD Shield // Seven-Segment Display // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // Seven-Segment Display int iSeven2 = 2; // iSeven2 int iSeven3 = 3; // iSeven3 int iSeven4 = 4; // iSeven4 int iSeven5 = 5; // iSeven5 int iSeven6 = 6; // iSeven6 int iSeven7 = 7; // iSeven7 int iSeven8 = 8; // iSeven8 void loop() { // Seven-Segment Display isSeven(); // Clear RGBLCDShield.clear(); }
getSeven.ino
// Seven-Segment Display void isSeven() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Seven-Segment"); // Seven-Segment Display // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven2 + "); // iSeven2 + digitalWrite(iSeven2, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven2 - "); // iSeven2 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven3 + "); // iSeven3 + digitalWrite(iSeven3, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven3 - "); // iSeven3 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven4 + "); // iSeven4 + digitalWrite(iSeven4, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven4 - "); // iSeven4 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven5 + "); // iSeven5 + digitalWrite(iSeven5, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven5 - "); // iSeven5 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven6 + "); // iSeven6 + digitalWrite(iSeven6, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven6 - "); // iSeven6 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven7 + "); // iSeven7 + digitalWrite(iSeven7, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven7 - "); // iSeven7 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven8 + "); // iSeven8 + digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven8 - "); // iSeven8 - delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 0 "); // iSeven 0 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven6, LOW); digitalWrite(iSeven7, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 1 "); // iSeven 1 digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 2 "); // iSeven 2 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven6, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 3 "); // iSeven 3 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 4 "); // iSeven 4 digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 5 "); // iSeven 5 digitalWrite(iSeven2, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 6 "); // iSeven 6 digitalWrite(iSeven2, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven6, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 7 "); // iSeven 7 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 8 "); // iSeven 8 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven6, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("iSeven 9 "); // iSeven 9 digitalWrite(iSeven2, LOW); digitalWrite(iSeven3, LOW); digitalWrite(iSeven4, LOW); digitalWrite(iSeven5, LOW); digitalWrite(iSeven7, LOW); digitalWrite(iSeven8, LOW); delay(5000); // Seven - Off isSevOff(); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven - Off "); // Seven - Off delay(2000); } // Seven - Off void isSevOff() { // Seven - Off digitalWrite(iSeven2, HIGH); digitalWrite(iSeven3, HIGH); digitalWrite(iSeven4, HIGH); digitalWrite(iSeven5, HIGH); digitalWrite(iSeven6, HIGH); digitalWrite(iSeven7, HIGH); digitalWrite(iSeven8, HIGH); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Seven-Segment"); // Seven-Segment Display delay(5000); // Clear RGBLCDShield.clear(); // Seven-Segment Display pinMode(iSeven2, OUTPUT); // iSeven2 pinMode(iSeven3, OUTPUT); // iSeven3 pinMode(iSeven4, OUTPUT); // iSeven4 pinMode(iSeven5, OUTPUT); // iSeven5 pinMode(iSeven6, OUTPUT); // iSeven6 pinMode(iSeven7, OUTPUT); // iSeven7 pinMode(iSeven8, OUTPUT); // iSeven8 isSevOff(); // Seven - Off }
Don Luc
Project #7: RGB LCD Shield – LED RGB – Mk05
LED RGB
LED RGB are tri-color LEDs with red, green, and blue emitters, in general using a four-wire connection with one common lead (anode or cathode). These LEDs can have either common positive leads in the case of a common anode LED, or common negative leads in the case of a common cathode LED. Others, however, have only two leads (positive and negative) and have a built-in electronic control unit.
LED RGB (Red-Green-Blue) are actually three LEDs in one! But that doesn’t mean it can only make three colors. Because red, green, and blue are the additive primary colors, you can control the intensity of each to create every color of the rainbow. Most RGB LEDs have four pins: one for each color, and a common pin. On some, the common pin is the anode, and on others, it’s the cathode.
Circuit Schematics (Common Cathode)
The cathode will be connected to the VIN and will be connected through 330 Ohms resistor. We will use PWM for simulating analog output which will provide different voltage levels to the LEDs so we can get the desired colors. We will use PWM for simulating analog output which will provide different voltage levels to the LEDs so we can get the desired colors.
Source Code
I will use the pins number 4, 3 and 2 and I will name them iRed, iGreen and iBlue. In the setup section we need to define them as outputs. At the bottom of the sketch we have this custom made function named setColor() which takes 3 different arguments red, green and blue. These arguments represents the brightness of the LEDs or the duty cycle of the PWM signal which is created using the analogWrite() function. These values can vary from 0 to 255 which represents 100 % duty cycle of the PWM signal or maximum LED brightness.
So now in the loop function we will make our program which will change the color of the LED each 2 second. In order to get red light on the LED we will call the setColor() function and set value of 255 for the iRed argument and 0 for the two others. Respectively we can get the two other basic colors, green and blue.
DonLuc1807Mk09
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x LED RGB (NSTM515AS)
1 x 330 ohm resistor
4 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
Red – Digital 4
Gre – Digital 3
Blu – Digital 2
VIN – +5V
DonLuc1807Mk09p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – LED RGB – Mk05 // 7-9 // DonLuc1807Mk09p 7-9 // RGB LCD Shield // LED RGB // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // LED RGB #define COMMON_ANODE int iBlue = 2; int iGreen = 3; int iRed = 4; void loop() { // LED RGB isColor(); delay(500); // Clear RGBLCDShield.clear(); }
getColor.ino
// LED RGB void isColor() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("LED RGB"); // LED RGB // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Red "); // Red setColor(255, 0, 0); // Red Color delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Green "); // Green setColor(0, 255, 0); // Green Color delay(2000); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Blue "); // Blue setColor(0, 0, 255); // Blue Color delay(2000); } void setColor(int red, int green, int blue) { #ifdef COMMON_ANODE red = 255 - red; green = 255 - green; blue = 255 - blue; #endif analogWrite(iRed, red); analogWrite(iGreen, green); analogWrite(iBlue, blue); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("LED RGB"); // LED RGB delay(5000); // Clear RGBLCDShield.clear(); // LED RGB pinMode(iBlue, OUTPUT); // Blue pinMode(iGreen, OUTPUT); // Green pinMode(iRed, OUTPUT); // Red }
Don Luc
Project #7: RGB LCD Shield – IR Emitters and Detectors – Mk04
Infrared Emitters and Detectors
Side-looking Infrared Emitters and IR Detectors. These simple devices operate at 940nm and work well for generic IR systems including remote control and touch-less object sensing. Using a simple ADC on any microcontroller will allow variable readings to be collected from the detector. The emitter is driven up to 50mA with a current limiting resistor as with any LED device. The detect is a NPN transistor that is biased by incoming IR light.
Sold as a pair, with one Emitter and one Detector.
IR Emitter
Connect IR LED using a 270 ohm series resistor to the +5 supply (or to an Arduino pin if you want to switch the source on and off). Current draw is about 11 mA with a 270 ohm resistor. Current runs from anode to cathode. Flat on the case marks the cathode. To determine if the IR LED is the right way around.
IR Detector
A IR Detector is just like a regular transistor except the base lead is disabled or absent and light activates base current. The flat on the case marks the collector, the other lead is the emitter. Connect the collector to one end of a 10K ohm resistor and connect the other end of the resistor to a +5V supply (you can use the +5 pin on the Arduino). Connect the emitter to ground. The voltage should start out at +5V. When pointing the IR Detector, the voltage should drop down to near zero. To interface with the Arduino, make a second connection from the collector to an Arduino pin.
DonLuc1807Mk08
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x IR Emitter
1 x IR Detector
1 x 270 ohm resistor
1 x 10k ohm resistor
3 x Jumper Wires 3″ M/M
4 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
Det – Analog A0
Emi – Digital 2
VIN – +5V
GND – GND
DonLuc1807Mk08p.ino
// ***** Don Luc ***** // Software Version Information // Project #7: RGB LCD Shield – IR Emitters and Detectors – Mk04 // 7-8 // DonLuc1807Mk08p 7-8 // RGB LCD Shield // IR Emitters and Detectors // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // IR Emitters and Detectors int iDet = 2; int iSense = A0; int iVal; void loop() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("IR Emi - Det"); // IR Emitters and Detectors // IR Emitters and Detectors iVal = analogRead(iSense); // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); if ( iVal >= 1005 ) { RGBLCDShield.print("Alarm"); // Alarm } else { RGBLCDShield.print("No"); // No } delay(1000); // Clear RGBLCDShield.clear(); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("IR Emi - Det"); // IR Emitters and Detectors delay(5000); // Clear RGBLCDShield.clear(); // IR Emitters and Detectors pinMode(iDet, OUTPUT); pinMode(iSense, INPUT); digitalWrite(iDet,HIGH); }
Don Luc
Project #9: Stepper – EasyDriver – Mk04
EasyDriver – Hook-Up
Once you have all the headers soldered on, it’s time to hook up the EasyDriver to your Arduino. Using the picture below, make all the necessary connections.
Note: The small stepper motor looks different than the one pictured. It should have a 4-pin connector on the end. This will be attached to the 4-pin male header facing upward. Because of the nature of this particular stepper, you can hook up the connector in either orientation, i.e. either the black wire on the left or the yellow wire on the left. It will work either way. If you are using a different motor, consult its documentation to find out which wires should go where.
IMPORTANT: Stepper motors require more power than can be supplied by the Arduino. In this example we will be powering the Uno with a 12V external supply. Notice that the power input (M+) on the EasyDriver is attached to the Vin pin on the Arduino. This will allow you to power both the Arduino and the motor with the same power supply.
DonLuc1807Mk07
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x EasyDriver
1 x Small Stepper Motor
1 x Pololu Mounting
3 x Jumper Wires 3″ M/M
4 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
Spe – Digital 3
Dir – Digital 2
VIN – +5V
GND – GND
DonLuc1807Mk07p.ino
// ***** Don Luc ***** // Software Version Information // Project #9: Stepper - EasyDriver - Mk04 // 7-7 // DonLuc1807Mk07p 7-7 // Stepper // EasyDriver // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // EasyDriver int dirPin = 2; // EasyDriver int stepPin = 3; // stepPin void loop() { // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("EasyDriver"); // EasyDriver // EasyDriver int i; // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Left"); // Left digitalWrite(dirPin, LOW); // Set the direction. delay(100); for (i = 0; i<4000; i++) // Iterate for 4000 microsteps. { digitalWrite(stepPin, LOW); // This LOW to HIGH change is what creates the digitalWrite(stepPin, HIGH); // "Rising Edge" so the easydriver knows to when to step. delayMicroseconds(500); // This delay time is close to top speed for this } // particular motor. Any faster the motor stalls. // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Right"); // Right digitalWrite(dirPin, HIGH); // Change direction. delay(2000); for (i = 0; i<4000; i++) // Iterate for 4000 microsteps { digitalWrite(stepPin, LOW); // This LOW to HIGH change is what creates the digitalWrite(stepPin, HIGH); // "Rising Edge" so the easydriver knows to when to step. delayMicroseconds(500); // This delay time is close to top speed for this } // particular motor. Any faster the motor stalls. delay(2000); // Clear RGBLCDShield.clear(); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("EasyDriver"); // EasyDriver delay(5000); // Clear RGBLCDShield.clear(); // EasyDriver pinMode(dirPin, OUTPUT); pinMode(stepPin, OUTPUT); }
Don Luc
Project #8: Servo – Potentiometer Servo – Mk01
Servo Motor
A servo motor is a rotary actuator or linear actuator that allows for precise control of angular or linear position, velocity and acceleration. It consists of a suitable motor coupled to a sensor for position feedback. It also requires a relatively sophisticated controller, often a dedicated module designed specifically for use with servo motors.
Servo motors have been around for a long time and are utilized in many applications. They are small in size but pack a big punch and are very energy-efficient. These features allow them to be used to operate remote-controlled or radio-controlled toy cars, robots and airplanes. Servo motors are also used in industrial applications, robotics, in-line manufacturing, pharmaceutics and food services.
Circuit
Servo motors have three wires: power, ground, and signal. The power wire is red, and should be connected to the 5V pin on the Arduino board. The ground wire is black and should be connected to a ground pin on the board. The signal pin is orange and should be connected to pin 9 on the board.
The potentiometer should be wired so that its two outer pins are connected to power (+5V) and ground, and its middle pin is connected to analog input 0 on the board.
DonLuc1805Mk07
1 x RGB LCD Shield 16×2 Character Display
1 x Arduino UNO – R3
1 x ProtoScrewShield
1 x Servo Motor
1 x 100k Ohm Potentiometer
1 x Potentiometer Knob
4 x Jumper Wires 3″ M/M
4 x Jumper Wires 6″ M/M
1 x Half-Size Breadboard
Arduino UNO
Ser – Digital 9
Pot – Analog A0
VIN – +5V
GND – GND
DonLuc1807Mk03.ino
// ***** Don Luc ***** // Software Version Information // Project #8: Servo Motor - Potentiometer - Mk01 // 7-3 // DonLuc1807Mk03 7-3 // Servo Motor // Potentiometer Servo // include the library code: #include <Adafruit_MCP23017.h> #include <Adafruit_RGBLCDShield.h> #include <Servo.h> Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield(); #define GREEN 0x2 // Potentiometer Servo Motor Servo isServo; // Create servo object to control a servo int iPot1 = A0; // Analog Potentiometer 1 int iVal; // Variable - Analog Potentiometer 1 void loop() { // Potentiometer Servo Motor iVal = analogRead(iPot1); // Reads the value of the iPot1 (Value between 0 and 1023) iVal = map(iVal, 0, 1023, 0, 180); // Scale it to use it with the isServo (Value between 0 and 180) isServo.write(iVal); // isServo sets the servo position according to the scaled value delay(15); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Potentiometer"); // Potentiometer // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print(iVal); // Reads the value iVal delay(500); // Clear RGBLCDShield.clear(); }
setup.ino
// Setup void setup() { // set up the LCD's number of columns and rows: RGBLCDShield.begin(16, 2); RGBLCDShield.setBacklight(GREEN); // Display // Set the cursor to column 0, line 0 RGBLCDShield.setCursor(0,0); RGBLCDShield.print("Don Luc"); // Don luc // Set the cursor to column 0, line 1 RGBLCDShield.setCursor(0, 1); RGBLCDShield.print("Potentiometer"); // Potentiometer Servo Motor delay(5000); // Clear RGBLCDShield.clear(); // Potentiometer Servo Motor isServo.attach(9); // Attaches the Servo on pin 9 to the Servo Object }
Don Luc
Project #6: MicroView – Alcohol Gas Sensor – Mk09
Alcohol Gas Sensor – MQ-3
This alcohol sensor is suitable for detecting alcohol concentration on your breath, just like your common breathalyzer. It has a high sensitivity and fast response time. Sensor provides an analog resistive output based on alcohol concentration. The drive circuit is very simple, all it needs is one resistor. A simple interface could be a 0-3.3V ADC.
Features
* 5V DC or AC circuit
* Requires heater voltage
* Operation Temperature: -10 to 70 degrees C
* Heater consumption: less than 750mW* 16.8mm diameter
* 9.3 mm height without the pins
Note: Again, the MQ-3 is heater-driven so be aware that the sensor will become warm and may even emit a smell at first. This is completely normal.
Calibration: If you take your time, you can find out what values equate to specific percentages or even blood alcohol concentration in the case of a breathalyzer. You will of course need to calibrate your MQ-3 based on your specific Arduino code since sensor readings will vary. Do not get the sensor wet with alcohol! Simply squeeze to breathe the vapors of the alcohol into the sensor and take your readings.
Alcohol Gas Sensor – MQ-3
1 x MicroView
1 x MicroView – USB Programmer
1 x Alcohol Gas Sensor – MQ-3
1 x NeoPixel Stick – 8 x 5050 RGB LED
1 x LED Green
1 x 10k Ohm
1 x 100k Ohm Potentiometer
1 x Potentiometer Knob
1 x 4 Header
2 x 2 Header
14 x Jumper Wires 3″ M/M
1 x Half-Size Breadboard
1 x Battery Holder 3xAAA with Cover and Switch
3 x Battery AAA
MicroView
Pot – PIN 05 – Analog A2
MQ-3 – PIN 07 – Analog A0
GND – PIN 08 – GND
VIN – PIN 15 – +5V
NEO – PIN 12 – Digital 3
LEDG – PIN 11 – Digital 2
DonLuc1807Mk01
DonLuc1807Mk01.ino
// ***** Don Luc ***** // Software Version Information // Project #6: MicroView - Alcohol Gas Sensor - MQ-3 - Mk09 // 7.1 // DonLuc1807Mk01 7-1 // MicroView // Alcohol Gas Sensor - MQ-3 // include the library code: #include <MicroView.h> #include <Adafruit_NeoPixel.h> // Alcohol Gas Sensor - MQ-3 int mq3Pin0 = A0; // Connected to the output pin of MQ3 int mq3Value = 0; // NeoPixels #define PIN 3 // On digital pin 3 #define NUMPIXELS 8 // NeoPixels NUMPIXELS = 8 Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800); int red = 0; // Red int green = 0; // Green int blue = 0; // Blue int iNeo = 0; // Neopix const int iBriPin = A2; // Panel Mount 1K potentiometer Brightneed int iBri = 0; // Neopix Brightness int iBriMin = 1023; // Brightneed minimum sensor value int iBriMax = 0; // Brightneed maximum sensor value // LED int ledG = 1; // LED Green void loop() { // Alcohol Gas Sensor - MQ-3 // Give ample warmup time for readings to stabilize isMQ3(); delay(100); uView.clear(PAGE); // Erase the memory buffer, the OLED will be cleared }
getMQ3.ino
// Alcohol Gas Sensor - MQ-3 void isMQ3(){ // LEDs - Low for(int z=0; z<NUMPIXELS; z++){ // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = z; // Neopix neopix(); } // Probe mq3Value = analogRead(mq3Pin0); // Take a reading from the probe if( mq3Value >= 1 ){ // If the reading isn't zero, proceed if (mq3Value > 1){ // If the average is over 50 ... // Green red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = 0; // Neopix neopix(); } else{ // and if it's not ... // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = 0; // Neopix neopix(); } if (mq3Value > 250){ // and so on ... // Green red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = 1; // Neopix neopix(); } else{ // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = 1; // Neopix neopix(); } if (mq3Value > 350){ // Green red = 0; // Red green = 255; // Green blue = 0; // Blue iNeo = 2; // Neopix neopix(); } else{ // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = 1; // Neopix neopix(); } if (mq3Value > 500){ // Yellow red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = 3; // Neopix neopix(); } else{ // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = 3; // Neopix neopix(); } if (mq3Value > 650){ // Yellow red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = 4; // Neopix neopix(); } else{ // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = 4; // Neopix neopix(); } if (mq3Value > 750){ // Yellow red = 255; // Red green = 255; // Green blue = 0; // Blue iNeo = 5; // Neopix neopix(); } else{ // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = 5; // Neopix neopix(); } if (mq3Value > 850){ // Red red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = 6; // Neopix neopix(); } else{ // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = 6; // Neopix neopix(); } if (mq3Value > 950){ // Red red = 255; // Red green = 0; // Green blue = 0; // Blue iNeo = 7; // Neopix neopix(); } else{ // Black red = 0; // Red green = 0; // Green blue = 0; // Blue iNeo = 7; // Neopix neopix(); } } uView.setFontType(0); // Set font type 0: Numbers and letters. 10 characters per line (6 lines) uView.setCursor(0,10); // Alcohol Gas Sensor uView.print( "Alcohol" ); uView.setCursor(0,30); // Alcohol Gas Sensor uView.print( mq3Value ); uView.display(); // Display }
neopix.ino
// Neopix void neopix() { // Brightness iBri = analogRead(iBriPin); // iBri apply the calibration to the sensor reading iBri = map(iBri, iBriMin, iBriMax, 0, 255); // iBri in case the sensor value is outside the range seen during calibration iBri = constrain(iBri, 0, 255); pixels.setBrightness( iBri ); // Pixels.Color takes RGB values, from 0,0,0 up to 255,255,255 pixels.setPixelColor( iNeo, pixels.Color(red,green,blue) ); // This sends the updated pixel color to the hardware pixels.show(); // Delay for a period of time (in milliseconds) delay(50); }
setup.ino
// Setup void setup() { uView.begin(); // Begin of MicroView uView.clear(ALL); // Erase hardware memory inside the OLED controller uView.display(); // Display the content in the buffer memory, by default it is the MicroView logo delay(1000); uView.clear(PAGE); // Erase the memory buffer, the OLED will be cleared. uView.setFontType(1); // Set font type 1: Numbers and letters. 7 characters per line (3 lines) uView.setCursor(0,20); uView.print("Don Luc"); // Don Luc uView.display(); // Display delay(5000); uView.clear(PAGE); // Erase the memory buffer, the OLED will be cleared. uView.setFontType(1); // Set font type 1: Numbers and letters. 7 characters per line (3 lines) uView.setCursor(0,20); uView.print("MQ-3"); // Alcohol Gas Sensor - MQ-3 uView.display(); // Display delay(5000); uView.clear(PAGE); // Erase the memory buffer, the OLED will be cleared // NeoPixels pixels.begin(); // This initializes the NeoPixel library // LED pinMode( ledG, OUTPUT ); // LED Green // LED Green - High digitalWrite( ledG, HIGH); }
Don Luc
Raspberry Pi NoIR Camera V2.1
The infrared Camera Module v2 (Pi NoIR) has a Sony IMX219 8-megapixel sensor custom designed add-on board for Raspberry Pi, featuring a fixed focus lens. It’s capable of 3280 x 2464 pixel static images, and also support 1080p30, 720p60, and 640x480p60/90 video. The Pi NoIR gives you everything the regular Camera Module offers, with one difference: it does not employ an infrared filter. This means that pictures you take by daylight will look decidedly curious, but it gives you the ability to see in the dark with infrared lighting.
We bundle a little square of blue gel with the Pi NoIR “night vision”, which you can use with the camera to monitor the health of green plants. The Pi NoIR is very popular among wildlife hobbyists: with a few infrared LEDs, you can monitor what nocturnal animals are doing in your garden without disturbing them. It attaches to the Pi by way of one of the small sockets on the board’s upper surface and uses the dedicated CSi interface, designed especially for interfacing to cameras. The NoIR Camera has No InfraRed (NoIR) filter on the lens which makes it perfect for doing Infrared photography and taking pictures in low light (twilight) environments.
Features
Improved Resolution
* 8 megapixel native resolution high quality Sony IMX219 image sensor
* Cameras are capable of 3280 x 2464 pixel static images
Remaining High Quality
* Capture video at 1080p30, 720p60 and 640x480p90 resolutions
* All software is supported within the latest version of Raspbian Operating System
* No Infrared filter making it perfect for taking Infrared photographs or photographing objects in low light (twilight) conditions
* 1.4 µm X 1.4 µm pixel with OmniBSI technology for high performance (high sensitivity, low crosstalk, low noise)
* Optical size of 1/4″
Technical Details
Dimensions: 25mm x 23mm x 9mm / 0.98″ x 0.90″ x 0.35″
Weight (camera board + attached cable): 3.4g
1 x Raspberry Pi NoIR Camera V2.1
1 x Filter
1 x Camera Cable
1 x Raspberry Pi 3 – Model B
1 x MicroSD 16 GB
1 x 5V 2A Switching Power Supply
Don Luc