The Alpha Geek – Geeking Out

Program

Project #22: Synthesizer – Volume Sound – Mk07

——

DonLucElectronics #DonLuc #Synthesizer #UltrasonicSynth #Mozzi #Arduino #ArduinoProMini #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

Volume Sound

——

Volume Sound

——

Volume Sound

——

Volume Sound

Volume the degree of loudness or the intensity of a sound. The volume of a sound is how loud or quiet the sound is. Sounds are vibrations that travel through the air. Volume, or loudness, is related to the strength, intensity, pressure, or power of the sound. Amplified vibrations result in louder sounds. There are a few ways of varying the volume.

I am using the Mozzi audio library to implement a simple synthesizer and using a potentiometer to control the amplitude of a sinewave with Mozzi sonification library. To convey the volume level. Volume it to an 8 bit range for efficient calculations.

DL2207Mk04

1 x Arduino Pro Mini 328 – 5V/16MHz
2 x HC-SR04 Ultrasonic Sensor
3 x 1M Ohm Potentiometer
3 x Knob
1 x Audio Jack 3.5mm
1 x SparkFun Audio Jack Breakout
1 x SparkFun USB Mini-B Breakout
1 x SPDT Slide Switch
1 x JST Jumper 2 Wire Connector
1 x JST Jumper 3 Wire Connector
1 x Insignia Speakers
1 x SparkFun Solderable Breadboard – Large
1 x SparkFun FTDI Basic Breakout – 5V
1 x SparkFun Cerberus USB Cable

Arduino Pro Mini 328 – 5V/16MHz

Ech – Digital 13
Tri – Digital 12
EcR – Digital 11
TrR – Digital 10
SPK – Digital 9
CAP – Analog A0
CAH – Analog A1
CAV – Analog A2
VIN – +5V
GND – GND

——

DL2207Mk04p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #22: Synthesizer - Volume - Mk07
22-07
DL2207Mk04p.ino
1 x Arduino Pro Mini 328 - 5V/16MHz
2 x HC-SR04 Ultrasonic Sensor
3 x 1M Ohm Potentiometer
3 x Knob
1 x Audio Jack 3.5mm
1 x SparkFun Audio Jack Breakout
1 x SparkFun USB Mini-B Breakout
1 x SPDT Slide Switch
1 x JST Jumper 2 Wire Connector
1 x JST Jumper 3 Wire Connector
1 x Insignia Speakers
1 x SparkFun Solderable Breadboard - Large
1 x SparkFun FTDI Basic Breakout - 5V
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Mozzi
#include <MozziGuts.h>
// Oscillator
#include <Oscil.h>
// Table for Oscils to play
#include <tables/cos2048_int8.h>
// Smoothing Control
#include <Smooth.h>
// Maps unpredictable inputs to a range
#include <AutoMap.h>

// Desired carrier frequency max and min, for AutoMap
const int MIN_CARRIER_FREQ = 22;
const int MAX_CARRIER_FREQ = 440;

// Desired intensity max and min, for AutoMap, note they're inverted for reverse dynamics
const int MIN_INTENSITY = 700;
const int MAX_INTENSITY = 10;

// Desired mod speed max and min, for AutoMap, note they're inverted for reverse dynamics
const int MIN_MOD_SPEED = 10000;
const int MAX_MOD_SPEED = 1;

// Maps unpredictable inputs to a range
AutoMap kMapCarrierFreq(0,1023,MIN_CARRIER_FREQ,MAX_CARRIER_FREQ);
AutoMap kMapIntensity(0,1023,MIN_INTENSITY,MAX_INTENSITY);
AutoMap kMapModSpeed(0,1023,MIN_MOD_SPEED,MAX_MOD_SPEED);

// Set the input for the knob to analog pin 0
const int KNOB_PIN = A0;
// Set the analog input for fm_intensity
int LDR1_PIN;
// Set the analog input for mod rate
int LDR2_PIN;

// Table for Oscils to play
Oscil<COS2048_NUM_CELLS, AUDIO_RATE> aCarrier(COS2048_DATA);
Oscil<COS2048_NUM_CELLS, AUDIO_RATE> aModulator(COS2048_DATA);
Oscil<COS2048_NUM_CELLS, CONTROL_RATE> kIntensityMod(COS2048_DATA);

// Harmonics (Brightness)
int iModRatio = A1;
int mod_ratio;
// Carries control info from updateControl to updateAudio
long fm_intensity;

// Smoothing for intensity to remove clicks on transitions
float smoothness = 0.95f;
Smooth <long> aSmoothIntensity(smoothness);

// Trigger pin 12 to pitch distance sensor
const int iTrigPitch = 12;
// Echo Receive pin 13 to pitch distance sensor
const int iEchoPitch = 13;
// Define the useable range of the pitch sensor
const int pitchLowThreshold = 45;
const int pitchHighThreshold = 2;    
// Stores the distance measured by the distance sensor
float distance = 0;
// Trigger pin 10 to rate distance sensor
const int iTrigRate = 10;
// Echo Receive pin 13 to pitch distance sensor
const int iEchoRate = 11;
// Define the useable range of the pitch sensor
const int rateLowThreshold = 45;
const int rateHighThreshold = 2;    
// Stores the distance measured by the distance sensor
float rate = 0;

// Volume
// Set the input for the knob to analog pin 2
const int iVolKnob = A2;
// To convey the Volume level from updateControl() to updateAudio()
byte bVolume;

// Mini Speaker
int SPK = 9;

// Software Version Information
String sver = "22-07";

void loop() {

  // Audio Hook
  audioHook();
  
}

getHC-SR04.ino

// HC-SR04 Ultrasonic Sensor
// Setup HC-SR04
void setupHCSR04() {

  // The trigger iTrig Pitch will output pulses of electricity
  pinMode(iTrigPitch, OUTPUT);
  // The echo iEcho will measure the duration of pulses coming back from the distance sensor
  pinMode(iEchoPitch, INPUT);

  // The trigger iTrig Rate will output pulses of electricity
  pinMode(iTrigRate, OUTPUT);
  // The echo iEcho will measure the duration of pulses coming back from the distance sensor
  pinMode(iEchoRate, INPUT);
  
}
// Distance
float isDistance() {
  
  // Variable to store the time it takes for a ping to bounce off an object
  float echoTime;
  // Variable to store the distance calculated from the echo time
  float calculatedDistance;

  // Send out an ultrasonic pulse that's 10ms long
  digitalWrite(iTrigPitch, HIGH);
  delayMicroseconds(10);
  digitalWrite(iTrigPitch, LOW);

  // Use the pulseIn command to see how long it takes for the
  // pulse to bounce back to the sensor
  echoTime = pulseIn(iEchoPitch, HIGH);

  // Calculate the distance of the object that reflected the pulse
  // (half the bounce time multiplied by the speed of sound)
  calculatedDistance = echoTime * 0.034 / 2;

  // Send back the distance that was calculated
  return calculatedDistance;
  
}
// Rate
float isRate() {
  
  // Variable to store the time it takes for a ping to bounce off an object
  float echoTime;
  // Variable to store the distance calculated from the echo time
  float calculatedDistance;

  // Send out an ultrasonic pulse that's 10ms long
  digitalWrite(iTrigRate, HIGH);
  delayMicroseconds(10);
  digitalWrite(iTrigRate, LOW);

  // Use the pulseIn command to see how long it takes for the
  // pulse to bounce back to the sensor
  echoTime = pulseIn(iEchoRate, HIGH);

  // Calculate the distance of the object that reflected the pulse
  // (half the bounce time multiplied by the speed of sound)
  // cm = 58.0
  calculatedDistance = echoTime * 0.034 / 2;

  // Send back the distance that was calculated
  return calculatedDistance;
  
}

getMozzi.ino

// Mozzi
// Update Control
void updateControl(){

  // Variable to store the distance measured by the sensor
  distance = isDistance();
  // Low Threshold
  if ( distance >= pitchLowThreshold) {

    // pitchLowThreshold
    distance = pitchLowThreshold;
    
  }
  // High Threshold
  if ( distance < pitchHighThreshold){
    
    // pitchHighThreshold
    distance = pitchHighThreshold;
    
  }

  // Variable to store the distance measured by the sensor
  rate = isRate();
  // Low Threshold
  if ( rate >= rateLowThreshold) {

    // rateLowThreshold
    rate = rateLowThreshold;
    
  }
  // High Threshold
  if ( rate < rateHighThreshold){
    
    // rateHighThreshold
    rate = rateHighThreshold;
    
  }

  // Map
  distance = map(distance, 45, 2, 0, 1023);
  rate = map(rate, 45, 2, 0, 1023);
  
  // Read the knob
  // Value is 0-1023
  int knob_value = mozziAnalogRead(KNOB_PIN);

  // Read the mod_ratio
  // Value is 0-1023
  mod_ratio = mozziAnalogRead(iModRatio);

  // Map
  mod_ratio = map(mod_ratio, 0, 1023, 2, 15);

  // Map the knob to carrier frequency
  int carrier_freq = kMapCarrierFreq(knob_value);

  // Calculate the modulation frequency to stay in ratio
  int mod_freq = carrier_freq * mod_ratio;

  // Set the FM oscillator frequencies
  aCarrier.setFreq(carrier_freq);
  aModulator.setFreq(mod_freq);

  // Read the light dependent resistor on the width
  LDR1_PIN = distance;
  int LDR1_value = LDR1_PIN;

  int LDR1_calibrated = kMapIntensity(LDR1_value);

  // Calculate the fm_intensity
  // Shift back to range after 8 bit multiply
  fm_intensity = ((long)LDR1_calibrated * (kIntensityMod.next()+128))>>8;
  
  // Read the light dependent resistor on the speed
  LDR2_PIN = rate;
  int LDR2_value= LDR2_PIN;

  // Use a float here for low frequencies
  float mod_speed = (float)kMapModSpeed(LDR2_value)/1000;

  kIntensityMod.setFreq(mod_speed);

  // Read the variable resistor for volume
  // Value is 0-1023
  int iVolValue = mozziAnalogRead(iVolKnob); 
  // map it to an 8 bit range for efficient calculations in updateAudio
  bVolume = map(iVolValue, 0, 1023, 155, 1);
  
}
// Update Audio
int updateAudio()
{

  // Update Audio
  long modulation = aSmoothIntensity.next(fm_intensity) * aModulator.next() * bVolume;
  return aCarrier.phMod(modulation);

}

setup.ino

// Setup
void setup() {

  // Setup HC-SR04
  setupHCSR04();

  // Delay
  delay( 200 );

  // Mozzi Start
  startMozzi();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Research & Development (R & D)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

J. Luc Paquin – Curriculum Vitae – 2022 English & Español
https://www.jlpconsultants.com/luc/

Web: https://www.donluc.com/
Web: https://www.jlpconsultants.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #22: Synthesizer – Envelope – Mk06

——

#DonLucElectronics #DonLuc #Synthesizer #Mozzi #Keyboard #ADSREnvelope #Arduino #ArduinoProMini #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

Envelope

——

Envelope

——

Envelope

——

Envelope (Music)

In sound and music, an envelope describes how a sound changes over time. It may relate to elements such as amplitude (Volume), frequencies (with the use of filters) or pitch. For example, a piano key, when struck and held, creates a near-immediate initial sound which gradually decreases in volume to zero.

Envelope generators, which allow users to control the different stages of a sound, are common features of synthesizers, samplers, and other electronic musical instruments. The most common form of envelope generator is controlled with four parameters: attack, decay, sustain and release (ADSR).

A Simple ADSR Envelope Generator

This implementation has separate update() and next() methods, where next() interpolates values between each update(). The “normal” way to use this would be with update() in updateControl(), where it calculates a new internal state each control step, and then next() is in updateAudio(), called much more often, where it interpolates between the control values. This also allows the ADSR updates to be made even more sparsely if desired, eg. every 3rd control update.

noteOn()

Start the attack phase of the ADSR. This will restart the ADSR no matter what phase it is up to. True, the envelope will start from 0, even if it is still playing, often useful for effect envelopes. If false, the envelope will start rising from the current level, which could be non-zero, if it is still playing, most useful for note envelopes.

DL2207Mk01

1 x Arduino Pro Mini 328 – 5V/16MHz
8 x Tactile Button
3 x 1K Ohm Potentiometer
3 x Knob
1 x JST Jumper 3 Wire Connector
1 x Solderable Breadboard
1 x SparkFun FTDI Basic Breakout – 5V
1 x SparkFun Cerberus USB Cable

Arduino Pro Mini 328 – 5V/16MHz

KY2 – Digital 2
KY3 – Digital 3
KY4 – Digital 4
KY5 – Digital 5
KY6 – Digital 6
KY7 – Digital 7
KY8 – Digital 8
SPK – Digital 9
KY9 – Digital 10
PFR – Analog A3
CDE – Analog A2
CAT – Analog A1
VIN – +5V
GND – GND

DL2207Mk01p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #22: Synthesizer - Envelope - Mk06
22-06
DL2207Mk01p.ino
1 x Arduino Pro Mini 328 - 5V/16MHz
8 x Tactile Button
3 x 1K Ohm Potentiometer
3 x Knob
4 x SPDT Slide Switch
1 x JST Jumper 3 Wire
1 x Insignia Speakers
1 x Solderable Breadboard
1 x SparkFun FTDI Basic Breakout - 5V
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Pitches
#include "pitches.h"
// Mozzi
#include <MozziGuts.h>
// Oscillator
#include <Oscil.h>
// Table for Oscils to play
#include <tables/sin2048_int8.h>
// ADSR envelope generator
#include <ADSR.h>

// Simple Keyboard
// Minimum reading of the button that generates a note
const int iKeyboard2 = 2;
const int iKeyboard3 = 3;
const int iKeyboard4 = 4;
const int iKeyboard5 = 5;
const int iKeyboard6 = 6;
const int iKeyboard7 = 7;
const int iKeyboard8 = 8;
const int iKeyboard9 = 10; 
// Button is pressed
int aa = 1;
int bb = 1;
int cc = 1;
int dd = 1;
int ee = 1;
int ff = 1;
int gg = 1;
int hh = 1;

//Oscillator Functions declared for output envelope 1 
// Sine Wave
Oscil <2048, AUDIO_RATE> aSin1(SIN2048_DATA);

// ADSR declaration/definition
// Comment out to use control rate of 128
#define CONTROL_RATE 128
ADSR <CONTROL_RATE, CONTROL_RATE> envelope1;

// Set the input for the potentiometer Attack to analog pin 1
const int potAttack = A1;
// Attack
int attack_level = 0;
int iAttack = 0;

// Set the input for the potentiometer for Decay to analog pin 2
const int potDecay = A2;
// Decay
int decay_level = 0;
int iDecay = 0;

// Set the input for the potentiometer for Frequency to analog pin 3
const int potFreq = A3;
int iFreg = 1;
int iNoteA = 0;
int iNoteB = 0;
int iNoteC = 0;
int iNoteD = 0;
int iNoteE = 0;
int iNoteF = 0;
int iNoteG = 0;
int iNoteAA = 0;

// Software Version Information
String sver = "22-06";

void loop() {

  // Audio Hook
  audioHook();
  
}

getKeyboard.ino

// getKeyboard
// setupKeyboard
void setupKeyboard() {

  // Initialize the pushbutton pin as an input
  pinMode(iKeyboard2, INPUT_PULLUP);
  pinMode(iKeyboard3, INPUT_PULLUP);
  pinMode(iKeyboard4, INPUT_PULLUP);
  pinMode(iKeyboard5, INPUT_PULLUP);
  pinMode(iKeyboard6, INPUT_PULLUP);
  pinMode(iKeyboard7, INPUT_PULLUP);
  pinMode(iKeyboard8, INPUT_PULLUP);
  pinMode(iKeyboard9, INPUT_PULLUP);
 
}
// isKeyboard
void isKeyboard() {

  // Choose envelope levels
  // attack_level
  iAttack = mozziAnalogRead( potAttack );
  attack_level = map( iAttack, 0, 1023, 0, 255);
  // decay_level
  iDecay = mozziAnalogRead( potDecay );
  decay_level = map( iDecay, 0, 1023, 0, 255);
  // set AD Levels
  envelope1.setADLevels(attack_level,decay_level);

  // Read the state of the pushbutton value
  if ( digitalRead(iKeyboard2) == LOW ) {

    // Button is pressed - pullup keeps pin high normally
    aa = aa + 1;
    // ADSR declaration/definition
    envelope1.noteOn();
    aSin1.setFreq(iNoteA);
    
  }
  else
  {
    
    aa = aa - 1;
    
  }    

  // Read the state of the pushbutton value
  if ( digitalRead(iKeyboard3) == LOW ) {

    // Button is pressed - pullup keeps pin high normally
    bb = bb + 1;
    // Waveform
    envelope1.noteOn();
    aSin1.setFreq(iNoteB);
    
  }
  else
  {
    
    bb = bb - 1;
    
  }

  // Read the state of the pushbutton value
  if ( digitalRead(iKeyboard4) == LOW ) {

    // Button is pressed - pullup keeps pin high normally
    cc = cc + 1;
    // Waveform
    // ADSR declaration/definition
    envelope1.noteOn();
    aSin1.setFreq(iNoteC);
    
  }
  else
  {
    
    cc = cc - 1;
    
  }

  // Read the state of the pushbutton value
  if ( digitalRead(iKeyboard5) == LOW ) {

    // Button is pressed - pullup keeps pin high normally
    dd = dd + 1;
    // ADSR declaration/definition
    envelope1.noteOn();
    aSin1.setFreq(iNoteD);
      
  }
  else
  {
    
    dd = dd - 1;
    
  }
  
  // Read the state of the pushbutton value
  if ( digitalRead(iKeyboard6) == LOW ) {

    // Button is pressed - pullup keeps pin high normally
    ee = ee + 1;
    // ADSR declaration/definition
    envelope1.noteOn();
    aSin1.setFreq(iNoteE);    
  }
  else
  {
    
    ee = ee - 1;
    
  }

  // Read the state of the pushbutton value
  if ( digitalRead(iKeyboard7) == LOW ) {

    // Button is pressed - pullup keeps pin high normally
    ff = ff + 1;
    // ADSR declaration/definition
    envelope1.noteOn();
    aSin1.setFreq(iNoteF);
        
  }
  else
  {
    
    ff = ff - 1;
    
  }

  // Read the state of the pushbutton value
  if ( digitalRead(iKeyboard8) == LOW ) {

    // Button is pressed - pullup keeps pin high normally
    gg = gg + 1;
    // ADSR declaration/definition
    envelope1.noteOn();
    aSin1.setFreq(iNoteG);
        
  }
  else
  {
    
    gg = gg - 1;
    
  }

  // Read the state of the pushbutton value
  if ( digitalRead(iKeyboard9) == LOW ) {

    // Button is pressed - pullup keeps pin high normally
    hh = hh + 1;
    // ADSR declaration/definition
    envelope1.noteOn();
    aSin1.setFreq(iNoteAA);
        
  }
  else
  {
    
    hh = hh - 1;
    
  }

}

getMozzi.ino

// Mozzi
// Update Control
void updateControl(){

  // Frequency
  isPitches();
  
  // Keyboard
  isKeyboard();

}
// Update Audio
int updateAudio()
{

  // Update Audio
  // ADSR declaration/definition
  envelope1.update();
  // >>8 for AUDIO_MODE STANDARD
  return (int) (envelope1.next() * aSin1.next())>>8;

}

getPitches.ino

// Pitches
// isPitches
void isPitches(){
  
  // Frequency
  // Value is 0-1023
  iFreg = mozziAnalogRead(potFreq);
  iFreg = map(iFreg, 0, 1023, 3, 6);

  // Range Frequency Note Low => High
  switch ( iFreg ) {
    case 1:
      // NOTE A1
      iNoteA = NOTE_A1;
      iNoteB = NOTE_B1;
      iNoteC = NOTE_C2;
      iNoteD = NOTE_D2;
      iNoteE = NOTE_E2;
      iNoteF = NOTE_F2;
      iNoteG = NOTE_G2;
      iNoteAA = NOTE_A2;
      break;
    case 2:
      // NOTE A2
      iNoteA = NOTE_A2;
      iNoteB = NOTE_B2;
      iNoteC = NOTE_C3;
      iNoteD = NOTE_D3;
      iNoteE = NOTE_E3;
      iNoteF = NOTE_F3;
      iNoteG = NOTE_G3;
      iNoteAA = NOTE_A3;
      break;
    case 3:
      // NOTE A3
      iNoteA = NOTE_A3;
      iNoteB = NOTE_B3;
      iNoteC = NOTE_C4;
      iNoteD = NOTE_D4;
      iNoteE = NOTE_E4;
      iNoteF = NOTE_F4;
      iNoteG = NOTE_G4;
      iNoteAA = NOTE_A4;
      break;
    case 4:
      // NOTE A4
      iNoteA = NOTE_A4;
      iNoteB = NOTE_B4;
      iNoteC = NOTE_C5;
      iNoteD = NOTE_D5;
      iNoteE = NOTE_E5;
      iNoteF = NOTE_F5;
      iNoteG = NOTE_G5;
      iNoteAA = NOTE_A5;
      break;
    case 5:
      // NOTE A5
      iNoteA = NOTE_A5;
      iNoteB = NOTE_B5;
      iNoteC = NOTE_C6;
      iNoteD = NOTE_D6;
      iNoteE = NOTE_E6;
      iNoteF = NOTE_F6;
      iNoteG = NOTE_G6;
      iNoteAA = NOTE_A6;
      break;
    case 6:
      // NOTE A6
      iNoteA = NOTE_A6;
      iNoteB = NOTE_B6;
      iNoteC = NOTE_C7;
      iNoteD = NOTE_D7;
      iNoteE = NOTE_E7;
      iNoteF = NOTE_F7;
      iNoteG = NOTE_G7;
      iNoteAA = NOTE_A7;
      break;
  }
  
}

pitches.h

/*****************************************************************
 * Pitches NOTE_B0 <=> NOTE_DS8 - NOTE_A4 is "A" measured at 440Hz
 *****************************************************************/

#define NOTE_B0  31
#define NOTE_C1  33
#define NOTE_CS1 35
#define NOTE_D1  37
#define NOTE_DS1 39
#define NOTE_E1  41
#define NOTE_F1  44
#define NOTE_FS1 46
#define NOTE_G1  49
#define NOTE_GS1 52
#define NOTE_A1  55
#define NOTE_AS1 58
#define NOTE_B1  62
#define NOTE_C2  65
#define NOTE_CS2 69
#define NOTE_D2  73
#define NOTE_DS2 78
#define NOTE_E2  82
#define NOTE_F2  87
#define NOTE_FS2 93
#define NOTE_G2  98
#define NOTE_GS2 104
#define NOTE_A2  110
#define NOTE_AS2 117
#define NOTE_B2  123
#define NOTE_C3  131
#define NOTE_CS3 139
#define NOTE_D3  147
#define NOTE_DS3 156
#define NOTE_E3  165
#define NOTE_F3  175
#define NOTE_FS3 185
#define NOTE_G3  196
#define NOTE_GS3 208
#define NOTE_A3  220
#define NOTE_AS3 233
#define NOTE_B3  247
#define NOTE_C4  262
#define NOTE_CS4 277
#define NOTE_D4  294
#define NOTE_DS4 311
#define NOTE_E4  330
#define NOTE_F4  349
#define NOTE_FS4 370
#define NOTE_G4  392
#define NOTE_GS4 415
#define NOTE_A4  440
#define NOTE_AS4 466
#define NOTE_B4  494
#define NOTE_C5  523
#define NOTE_CS5 554
#define NOTE_D5  587
#define NOTE_DS5 622
#define NOTE_E5  659
#define NOTE_F5  698
#define NOTE_FS5 740
#define NOTE_G5  784
#define NOTE_GS5 831
#define NOTE_A5  880
#define NOTE_AS5 932
#define NOTE_B5  988
#define NOTE_C6  1047
#define NOTE_CS6 1109
#define NOTE_D6  1175
#define NOTE_DS6 1245
#define NOTE_E6  1319
#define NOTE_F6  1397
#define NOTE_FS6 1480
#define NOTE_G6  1568
#define NOTE_GS6 1661
#define NOTE_A6  1760
#define NOTE_AS6 1865
#define NOTE_B6  1976
#define NOTE_C7  2093
#define NOTE_CS7 2217
#define NOTE_D7  2349
#define NOTE_DS7 2489
#define NOTE_E7  2637
#define NOTE_F7  2794
#define NOTE_FS7 2960
#define NOTE_G7  3136
#define NOTE_GS7 3322
#define NOTE_A7  3520
#define NOTE_AS7 3729
#define NOTE_B7  3951
#define NOTE_C8  4186
#define NOTE_CS8 4435
#define NOTE_D8  4699
#define NOTE_DS8 4978

setup.ino

// Setup
void setup() {

  // Setup Keyboard
  setupKeyboard();

  // Mozzi Start
  startMozzi( CONTROL_RATE );
  // Sets Attack and Decay Levels; assumes Sustain, Decay, and Idle times
  envelope1.setADLevels(200,200);
  // Sets Decay time in milliseconds
  envelope1.setDecayTime(100);
  // Sustain Time setting for envelope1
  envelope1.setSustainTime(32500);
  
}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Research & Development (R & D)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

J. Luc Paquin – Curriculum Vitae – 2022 English & Español
https://www.jlpconsultants.com/luc/

Web: https://www.donluc.com/
Web: https://www.jlpconsultants.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #22: Synthesizer – Harmonics – Mk05

——

#DonLucElectronics #DonLuc #Synthesizer #UltrasonicSynth #Mozzi #Arduino #ArduinoProMini #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

Harmonics

——

Harmonics

——

Harmonics

——

Harmonics – Brightness

Nearly all signals contain energy at harmonic frequencies, in addition to the energy at the fundamental frequency. If it contains all the energy in a signal at the fundamental frequency, then that signal is a perfect sine wave. If the signal is not a perfect sine wave, then some energy is contained in the harmonics. Some waveforms contain large amounts of energy at harmonic frequencies.

Ratio

So in the harmonic series, we have a fundamental (pitch/note) and a succession of harmonics that stem from the fundamental which also hold other pitches within themselves.

Arduino – Map

map(value, fromLow, fromHigh, toLow, toHigh)

Re-maps a number from one range to another. That is, a value of fromLow would get mapped to toLow, a value of fromHigh to toHigh, values in-between to values in-between, etc…

DL2206Mk03

1 x Arduino Pro Mini 328 – 5V/16MHz
2 x HC-SR04 Ultrasonic Sensor
2 x 1M Ohm Potentiometer
2 x Knob
1 x Audio Jack 3.5mm
1 x SparkFun Audio Jack Breakout
1 x SparkFun USB Mini-B Breakout
1 x SPDT Slide Switch
1 x JST Jumper 2 Wire Connector
1 x JST Jumper 3 Wire Connector
1 x Insignia Speakers
1 x SparkFun Solderable Breadboard – Large
1 x SparkFun FTDI Basic Breakout – 5V
1 x SparkFun Cerberus USB Cable

Arduino Pro Mini 328 – 5V/16MHz

Ech – Digital 13
Tri – Digital 12
EcR – Digital 11
TrR – Digital 10
SPK – Digital 9
CAP – Analog A0
CAH – Analog A1
VIN – +5V
GND – GND

——

DL2206Mk03p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #22: Synthesizer - Harmonics - Mk05
22-05
DL2206Mk03p.ino
1 x Arduino Pro Mini 328 - 5V/16MHz
2 x HC-SR04 Ultrasonic Sensor
2 x 1M Ohm Potentiometer
2 x Knob
1 x Audio Jack 3.5mm
1 x SparkFun Audio Jack Breakout
1 x SparkFun USB Mini-B Breakout
1 x SPDT Slide Switch
1 x JST Jumper 2 Wire Connector
1 x JST Jumper 3 Wire Connector
1 x Insignia Speakers
1 x SparkFun Solderable Breadboard - Large
1 x SparkFun FTDI Basic Breakout - 5V
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Mozzi
#include <MozziGuts.h>
// Oscillator
#include <Oscil.h>
// Table for Oscils to play
#include <tables/cos2048_int8.h>
// Smoothing Control
#include <Smooth.h>
// Maps unpredictable inputs to a range
#include <AutoMap.h>

// Desired carrier frequency max and min, for AutoMap
const int MIN_CARRIER_FREQ = 22;
const int MAX_CARRIER_FREQ = 440;

// Desired intensity max and min, for AutoMap, note they're inverted for reverse dynamics
const int MIN_INTENSITY = 700;
const int MAX_INTENSITY = 10;

// Desired mod speed max and min, for AutoMap, note they're inverted for reverse dynamics
const int MIN_MOD_SPEED = 10000;
const int MAX_MOD_SPEED = 1;

// Maps unpredictable inputs to a range
AutoMap kMapCarrierFreq(0,1023,MIN_CARRIER_FREQ,MAX_CARRIER_FREQ);
AutoMap kMapIntensity(0,1023,MIN_INTENSITY,MAX_INTENSITY);
AutoMap kMapModSpeed(0,1023,MIN_MOD_SPEED,MAX_MOD_SPEED);

// Set the input for the knob to analog pin 0
const int KNOB_PIN = A0;
// Set the analog input for fm_intensity
int LDR1_PIN;
// Set the analog input for mod rate
int LDR2_PIN;

// Table for Oscils to play
Oscil<COS2048_NUM_CELLS, AUDIO_RATE> aCarrier(COS2048_DATA);
Oscil<COS2048_NUM_CELLS, AUDIO_RATE> aModulator(COS2048_DATA);
Oscil<COS2048_NUM_CELLS, CONTROL_RATE> kIntensityMod(COS2048_DATA);

// Harmonics (Brightness)
int iModRatio = A1;
int mod_ratio;
// Carries control info from updateControl to updateAudio
long fm_intensity;

// Smoothing for intensity to remove clicks on transitions
float smoothness = 0.95f;
Smooth <long> aSmoothIntensity(smoothness);

// Trigger pin 12 to pitch distance sensor
const int iTrigPitch = 12;
// Echo Receive pin 13 to pitch distance sensor
const int iEchoPitch = 13;
// Define the useable range of the pitch sensor
const int pitchLowThreshold = 45;
const int pitchHighThreshold = 2;    
// Stores the distance measured by the distance sensor
float distance = 0;
// Trigger pin 10 to rate distance sensor
const int iTrigRate = 10;
// Echo Receive pin 13 to pitch distance sensor
const int iEchoRate = 11;
// Define the useable range of the pitch sensor
const int rateLowThreshold = 45;
const int rateHighThreshold = 2;    
// Stores the distance measured by the distance sensor
float rate = 0;

// Mini Speaker
int SPK = 9;

// Software Version Information
String sver = "22-05";

void loop() {

  // Audio Hook
  audioHook();
  
}

getHC-SR04.ino

// HC-SR04 Ultrasonic Sensor
// Setup HC-SR04
void setupHCSR04() {

  // The trigger iTrig Pitch will output pulses of electricity
  pinMode(iTrigPitch, OUTPUT);
  // The echo iEcho will measure the duration of pulses coming back from the distance sensor
  pinMode(iEchoPitch, INPUT);

  // The trigger iTrig Rate will output pulses of electricity
  pinMode(iTrigRate, OUTPUT);
  // The echo iEcho will measure the duration of pulses coming back from the distance sensor
  pinMode(iEchoRate, INPUT);
  
}
// Distance
float isDistance() {
  
  // Variable to store the time it takes for a ping to bounce off an object
  float echoTime;
  // Variable to store the distance calculated from the echo time
  float calculatedDistance;

  // Send out an ultrasonic pulse that's 10ms long
  digitalWrite(iTrigPitch, HIGH);
  delayMicroseconds(10);
  digitalWrite(iTrigPitch, LOW);

  // Use the pulseIn command to see how long it takes for the
  // pulse to bounce back to the sensor
  echoTime = pulseIn(iEchoPitch, HIGH);

  // Calculate the distance of the object that reflected the pulse
  // (half the bounce time multiplied by the speed of sound)
  calculatedDistance = echoTime * 0.034 / 2;

  // Send back the distance that was calculated
  return calculatedDistance;
  
}
// Rate
float isRate() {
  
  // Variable to store the time it takes for a ping to bounce off an object
  float echoTime;
  // Variable to store the distance calculated from the echo time
  float calculatedDistance;

  // Send out an ultrasonic pulse that's 10ms long
  digitalWrite(iTrigRate, HIGH);
  delayMicroseconds(10);
  digitalWrite(iTrigRate, LOW);

  // Use the pulseIn command to see how long it takes for the
  // pulse to bounce back to the sensor
  echoTime = pulseIn(iEchoRate, HIGH);

  // Calculate the distance of the object that reflected the pulse
  // (half the bounce time multiplied by the speed of sound)
  // cm = 58.0
  calculatedDistance = echoTime * 0.034 / 2;

  // Send back the distance that was calculated
  return calculatedDistance;
  
}

getMozzi.ino

// Mozzi
// Update Control
void updateControl(){

  // Variable to store the distance measured by the sensor
  distance = isDistance();
  // Low Threshold
  if ( distance >= pitchLowThreshold) {

    // pitchLowThreshold
    distance = pitchLowThreshold;
    
  }
  // High Threshold
  if ( distance < pitchHighThreshold){
    
    // pitchHighThreshold
    distance = pitchHighThreshold;
    
  }

  // Variable to store the distance measured by the sensor
  rate = isRate();
  // Low Threshold
  if ( rate >= rateLowThreshold) {

    // rateLowThreshold
    rate = rateLowThreshold;
    
  }
  // High Threshold
  if ( rate < rateHighThreshold){
    
    // rateHighThreshold
    rate = rateHighThreshold;
    
  }

  // Map
  distance = map(distance, 45, 2, 0, 1023);
  rate = map(rate, 45, 2, 0, 1023);
  
  // Read the knob
  // Value is 0-1023
  int knob_value = mozziAnalogRead(KNOB_PIN);

  // Read the mod_ratio
  // Value is 0-1023
  mod_ratio = mozziAnalogRead(iModRatio);

  // Map
  mod_ratio = map(mod_ratio, 0, 1023, 2, 15);

  // Map the knob to carrier frequency
  int carrier_freq = kMapCarrierFreq(knob_value);

  // Calculate the modulation frequency to stay in ratio
  int mod_freq = carrier_freq * mod_ratio;

  // Set the FM oscillator frequencies
  aCarrier.setFreq(carrier_freq);
  aModulator.setFreq(mod_freq);

  // Read the light dependent resistor on the width
  LDR1_PIN = distance;
  int LDR1_value = LDR1_PIN;

  int LDR1_calibrated = kMapIntensity(LDR1_value);

  // Calculate the fm_intensity
  // Shift back to range after 8 bit multiply
  fm_intensity = ((long)LDR1_calibrated * (kIntensityMod.next()+128))>>8;
  
  // Read the light dependent resistor on the speed
  LDR2_PIN = rate;
  int LDR2_value= LDR2_PIN;

  // Use a float here for low frequencies
  float mod_speed = (float)kMapModSpeed(LDR2_value)/1000;

  kIntensityMod.setFreq(mod_speed);
  
}
// Update Audio
int updateAudio()
{

  // Update Audio
  long modulation = aSmoothIntensity.next(fm_intensity) * aModulator.next();
  return aCarrier.phMod(modulation);

}

setup.ino

// Setup
void setup() {

  // Setup HC-SR04
  setupHCSR04();

  // Delay
  delay( 200 );

  // Mozzi Start
  startMozzi();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Research & Development (R & D)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

J. Luc Paquin – Curriculum Vitae – 2022 English & Español
https://www.jlpconsultants.com/luc/

Web: https://www.donluc.com/
Web: https://www.jlpconsultants.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #22: Synthesizer – Solderable Breadboard – Large – Mk04

——

#DonLucElectronics #DonLuc #Synthesizer #UltrasonicSynth #Arduino #ArduinoProMini #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

Solderable Breadboard

——

Solderable Breadboard

——

Solderable Breadboard

——

SparkFun Solderable Breadboard – Large

This is the Large SparkFun Solderable Breadboard. A bare PCB that is the exact size as our full-size breadboard with the same connections to pins and power rails. This board is especially useful for preserving a prototype or experiment you just created on a solderless breadboard by soldering all the pieces in place. The large solderable breadboard also includes real estate for screw terminal connectors and a trace down the center gutter for ground.

DL2206Mk02

1 x Arduino Pro Mini 328 – 5V/16MHz
2 x HC-SR04 Ultrasonic Sensor
1 x 1M Ohm Potentiometer
1 x Knob
1 x Audio Jack 3.5mm
1 x SparkFun Audio Jack Breakout
1 x SparkFun USB Mini-B Breakout
1 x SPDT Slide Switch
1 x JST Jumper 2 Wire Connector
1 x JST Jumper 3 Wire Connector
1 x Insignia Speakers
1 x SparkFun Solderable Breadboard – Large
1 x SparkFun FTDI Basic Breakout – 5V
1 x SparkFun Cerberus USB Cable

Arduino Pro Mini 328 – 5V/16MHz

Ech – Digital 13
Tri – Digital 12
EcR – Digital 11
TrR – Digital 10
SPK – Digital 9
CAP – Analog A0
VIN – +5V
GND – GND

——

DL2206Mk02p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #22: Synthesizer - Solderable Breadboard - Large - Mk04
22-04
DL2206Mk02p.ino
1 x Arduino Pro Mini 328 - 5V/16MHz
2 x HC-SR04 Ultrasonic Sensor
1 x 1M Ohm Potentiometer
1 x Knob
1 x Audio Jack 3.5mm
1 x SparkFun Audio Jack Breakout
1 x SparkFun USB Mini-B Breakout
1 x SPDT Slide Switch
1 x JST Jumper 2 Wire Connector
1 x JST Jumper 3 Wire Connector
1 x Insignia Speakers
1 x SparkFun Solderable Breadboard - Large
1 x SparkFun FTDI Basic Breakout - 5V
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Mozzi
#include <MozziGuts.h>
// Oscillator
#include <Oscil.h>
// Table for Oscils to play
#include <tables/cos2048_int8.h>
// Smoothing Control
#include <Smooth.h>
// Maps unpredictable inputs to a range
#include <AutoMap.h>

// Desired carrier frequency max and min, for AutoMap
const int MIN_CARRIER_FREQ = 22;
const int MAX_CARRIER_FREQ = 440;

// Desired intensity max and min, for AutoMap, note they're inverted for reverse dynamics
const int MIN_INTENSITY = 700;
const int MAX_INTENSITY = 10;

// Desired mod speed max and min, for AutoMap, note they're inverted for reverse dynamics
const int MIN_MOD_SPEED = 10000;
const int MAX_MOD_SPEED = 1;

// Maps unpredictable inputs to a range
AutoMap kMapCarrierFreq(0,1023,MIN_CARRIER_FREQ,MAX_CARRIER_FREQ);
AutoMap kMapIntensity(0,1023,MIN_INTENSITY,MAX_INTENSITY);
AutoMap kMapModSpeed(0,1023,MIN_MOD_SPEED,MAX_MOD_SPEED);

// Set the input for the knob to analog pin 0
const int KNOB_PIN = A0;
// Set the analog input for fm_intensity
int LDR1_PIN;
// Set the analog input for mod rate
int LDR2_PIN;

// Table for Oscils to play
Oscil<COS2048_NUM_CELLS, AUDIO_RATE> aCarrier(COS2048_DATA);
Oscil<COS2048_NUM_CELLS, AUDIO_RATE> aModulator(COS2048_DATA);
Oscil<COS2048_NUM_CELLS, CONTROL_RATE> kIntensityMod(COS2048_DATA);

// Brightness (harmonics)
int mod_ratio = 5;
// Carries control info from updateControl to updateAudio
long fm_intensity;

// Smoothing for intensity to remove clicks on transitions
float smoothness = 0.95f;
Smooth <long> aSmoothIntensity(smoothness);

// Trigger pin 12 to pitch distance sensor
const int iTrigPitch = 12;
// Echo Receive pin 13 to pitch distance sensor
const int iEchoPitch = 13;
// Define the useable range of the pitch sensor
const int pitchLowThreshold = 45;
const int pitchHighThreshold = 2;    
// Stores the distance measured by the distance sensor
float distance = 0;
// Trigger pin 10 to rate distance sensor
const int iTrigRate = 10;
// Echo Receive pin 13 to pitch distance sensor
const int iEchoRate = 11;
// Define the useable range of the pitch sensor
const int rateLowThreshold = 45;
const int rateHighThreshold = 2;    
// Stores the distance measured by the distance sensor
float rate = 0;

// Mini Speaker
int SPK = 9;

// Software Version Information
String sver = "22-04";

void loop() {

  // Audio Hook
  audioHook();
  
}

getHC-SR04.ino

// HC-SR04 Ultrasonic Sensor
// Setup HC-SR04
void setupHCSR04() {

  // The trigger iTrig Pitch will output pulses of electricity
  pinMode(iTrigPitch, OUTPUT);
  // The echo iEcho will measure the duration of pulses coming back from the distance sensor
  pinMode(iEchoPitch, INPUT);

  // The trigger iTrig Rate will output pulses of electricity
  pinMode(iTrigRate, OUTPUT);
  // The echo iEcho will measure the duration of pulses coming back from the distance sensor
  pinMode(iEchoRate, INPUT);
  
}
// Distance
float isDistance() {
  
  // Variable to store the time it takes for a ping to bounce off an object
  float echoTime;
  // Variable to store the distance calculated from the echo time
  float calculatedDistance;

  // Send out an ultrasonic pulse that's 10ms long
  digitalWrite(iTrigPitch, HIGH);
  delayMicroseconds(10);
  digitalWrite(iTrigPitch, LOW);

  // Use the pulseIn command to see how long it takes for the
  // pulse to bounce back to the sensor
  echoTime = pulseIn(iEchoPitch, HIGH);

  // Calculate the distance of the object that reflected the pulse
  // (half the bounce time multiplied by the speed of sound)
  calculatedDistance = echoTime * 0.034 / 2;

  // Send back the distance that was calculated
  return calculatedDistance;
  
}
// Rate
float isRate() {
  
  // Variable to store the time it takes for a ping to bounce off an object
  float echoTime;
  // Variable to store the distance calculated from the echo time
  float calculatedDistance;

  // Send out an ultrasonic pulse that's 10ms long
  digitalWrite(iTrigRate, HIGH);
  delayMicroseconds(10);
  digitalWrite(iTrigRate, LOW);

  // Use the pulseIn command to see how long it takes for the
  // pulse to bounce back to the sensor
  echoTime = pulseIn(iEchoRate, HIGH);

  // Calculate the distance of the object that reflected the pulse
  // (half the bounce time multiplied by the speed of sound)
  // cm = 58.0
  calculatedDistance = echoTime * 0.034 / 2;

  // Send back the distance that was calculated
  return calculatedDistance;
  
}

getMozzi.ino

// Mozzi
// Update Control
void updateControl(){

  // Variable to store the distance measured by the sensor
  distance = isDistance();
  // Low Threshold
  if ( distance >= pitchLowThreshold) {

    // pitchLowThreshold
    distance = pitchLowThreshold;
    
  }
  // High Threshold
  if ( distance < pitchHighThreshold){
    
    // pitchHighThreshold
    distance = pitchHighThreshold;
    
  }

  // Variable to store the distance measured by the sensor
  rate = isRate();
  // Low Threshold
  if ( rate >= rateLowThreshold) {

    // rateLowThreshold
    rate = rateLowThreshold;
    
  }
  // High Threshold
  if ( rate < rateHighThreshold){
    
    // rateHighThreshold
    rate = rateHighThreshold;
    
  }

  // Read the knob
  // Value is 0-1023
  int knob_value = mozziAnalogRead(KNOB_PIN);

  // Map the knob to carrier frequency
  int carrier_freq = kMapCarrierFreq(knob_value);

  // Calculate the modulation frequency to stay in ratio
  int mod_freq = carrier_freq * mod_ratio;

  // Set the FM oscillator frequencies
  aCarrier.setFreq(carrier_freq);
  aModulator.setFreq(mod_freq);

  // Read the light dependent resistor on the width
  LDR1_PIN = distance;
  int LDR1_value = LDR1_PIN;

  int LDR1_calibrated = kMapIntensity(LDR1_value);

  // Calculate the fm_intensity
  // Shift back to range after 8 bit multiply
  fm_intensity = ((long)LDR1_calibrated * (kIntensityMod.next()+128))>>8;
  
  // Read the light dependent resistor on the speed
  LDR2_PIN = rate;
  int LDR2_value= LDR2_PIN;

  // Use a float here for low frequencies
  float mod_speed = (float)kMapModSpeed(LDR2_value)/1000;

  kIntensityMod.setFreq(mod_speed);
  
}
// Update Audio
int updateAudio()
{

  // Update Audio
  long modulation = aSmoothIntensity.next(fm_intensity) * aModulator.next();
  return aCarrier.phMod(modulation);

}

setup.ino

// Setup
void setup() {

  // Setup HC-SR04
  setupHCSR04();

  // Delay
  delay( 200 );

  // Mozzi Start
  startMozzi();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Research & Development (R & D)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

J. Luc Paquin – Curriculum Vitae – 2022 English & Español
https://www.jlpconsultants.com/luc/

Web: https://www.donluc.com/
Web: https://www.jlpconsultants.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #22: Synthesizer – UltrasonicSynth – Mk03

——

#DonLucElectronics #DonLuc #Synthesizer #UltrasonicSynth #Arduino #ArduinoProMini #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

UltrasonicSynth

——

UltrasonicSynth

——

UltrasonicSynth

——

UltrasonicSynth Mozzi

Oscil

Oscil plays a wavetable, cycling through the table to generate an audio or control signal. The frequency of the signal can be set or changed, and the output of an Oscil can be produced with for a simple cycling oscillator, or for a particular sample in the table.

Soundtables

Look-up-tables and python scripts to generate tables or convert sounds. Includes ready-to-use wave tables and a few example samples. Also check out the other scripts in the python folder for templates to use if you want to do your own thing.

Smooth

A simple infinite impulse response low pass filter for smoothing control or audio signals. Smoothness sets how much smoothing the filter will apply to its input. Use a float in the range 0 – 1, where 0 is not very smooth and 0.99 is very smooth.

AutoMap

Automatically map an input value to an output range without knowing the precise range of inputs beforehand.

DL2204Mk01

1 x Arduino Pro Mini 328 – 5V/16MHz
2 x HC-SR04 Ultrasonic Sensor
1 x 1M Ohm Potentiometer
1 x Knob
1 x Audio Jack 3.5mm
1 x SparkFun Audio Jack Breakout
1 x Insignia Speakers
1 x Full-Size Breadboard
1 x Half-Size Breadboard
1 x SparkFun FTDI Basic Breakout – 5V
1 x SparkFun Cerberus USB Cable

Arduino Pro Mini 328 – 5V/16MHz

Ech – Digital 13
Tri – Digital 12
EcR – Digital 11
TrR – Digital 10
SPK – Digital 9
CAP – Analog A0
VIN – +5V
GND – GND

——

DL2206Mk01p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #22: Synthesizer - UltrasonicSynth - Mk03
22-03
DL2206Mk01p.ino
1 x Arduino Pro Mini 328 - 5V/16MHz
2 x HC-SR04 Ultrasonic Sensor
1 x 1M Ohm Potentiometer
1 x Knob
1 x Audio Jack 3.5mm
1 x SparkFun Audio Jack Breakout
1 x Insignia Speakers
1 x Full-Size Breadboard
1 x Half-Size Breadboard
1 x SparkFun FTDI Basic Breakout - 5V
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Mozzi
#include <MozziGuts.h>
// Oscillator
#include <Oscil.h>
// Table for Oscils to play
#include <tables/cos2048_int8.h>
// Smoothing Control
#include <Smooth.h>
// Maps unpredictable inputs to a range
#include <AutoMap.h>

// Desired carrier frequency max and min, for AutoMap
const int MIN_CARRIER_FREQ = 22;
const int MAX_CARRIER_FREQ = 440;

// Desired intensity max and min, for AutoMap, note they're inverted for reverse dynamics
const int MIN_INTENSITY = 450;
const int MAX_INTENSITY = 50;

// Desired mod speed max and min, for AutoMap, note they're inverted for reverse dynamics
const int MIN_MOD_SPEED = 450;
const int MAX_MOD_SPEED = 50;

// Maps unpredictable inputs to a range
AutoMap kMapCarrierFreq(0,1023,MIN_CARRIER_FREQ,MAX_CARRIER_FREQ);
AutoMap kMapIntensity(0,1023,MIN_INTENSITY,MAX_INTENSITY);
AutoMap kMapModSpeed(0,1023,MIN_MOD_SPEED,MAX_MOD_SPEED);

// Set the input for the knob to analog pin 0
const int KNOB_PIN = A0;
// Set the analog input for fm_intensity
int LDR1_PIN;
// Set the analog input for mod rate
int LDR2_PIN;

// Table for Oscils to play
Oscil<COS2048_NUM_CELLS, AUDIO_RATE> aCarrier(COS2048_DATA);
Oscil<COS2048_NUM_CELLS, AUDIO_RATE> aModulator(COS2048_DATA);
Oscil<COS2048_NUM_CELLS, CONTROL_RATE> kIntensityMod(COS2048_DATA);

// Brightness (harmonics)
int mod_ratio = 5;
// Carries control info from updateControl to updateAudio
long fm_intensity;

// Smoothing for intensity to remove clicks on transitions
float smoothness = 0.95f;
Smooth <long> aSmoothIntensity(smoothness);

// Trigger pin 12 to pitch distance sensor
const int iTrigPitch = 12;
// Echo Receive pin 13 to pitch distance sensor
const int iEchoPitch = 13;
// Define the useable range of the pitch sensor
const int pitchLowThreshold = 450;
const int pitchHighThreshold = 50;    
// Stores the distance measured by the distance sensor
float distance = 0;
// Trigger pin 10 to rate distance sensor
const int iTrigRate = 10;
// Echo Receive pin 13 to pitch distance sensor
const int iEchoRate = 11;
// Define the useable range of the pitch sensor
const int rateLowThreshold = 450;
const int rateHighThreshold = 50;    
// Stores the distance measured by the distance sensor
float rate = 0;

// Mini Speaker
int SPK = 9;

// Software Version Information
String sver = "22-03";

void loop() {

  // Audio Hook
  audioHook();
  
}

getHC-SR04.ino

// HC-SR04 Ultrasonic Sensor
// Setup HC-SR04
void setupHCSR04() {

  // The trigger iTrig Pitch will output pulses of electricity
  pinMode(iTrigPitch, OUTPUT);
  // The echo iEcho will measure the duration of pulses coming back from the distance sensor
  pinMode(iEchoPitch, INPUT);

  // The trigger iTrig Rate will output pulses of electricity
  pinMode(iTrigRate, OUTPUT);
  // The echo iEcho will measure the duration of pulses coming back from the distance sensor
  pinMode(iEchoRate, INPUT);
  
}
// Distance
float isDistance() {
  
  // Variable to store the time it takes for a ping to bounce off an object
  float echoTime;
  // Variable to store the distance calculated from the echo time
  float calculatedDistance;

  // Send out an ultrasonic pulse that's 10ms long
  digitalWrite(iTrigPitch, HIGH);
  delayMicroseconds(10);
  digitalWrite(iTrigPitch, LOW);

  // Use the pulseIn command to see how long it takes for the
  // pulse to bounce back to the sensor
  echoTime = pulseIn(iEchoPitch, HIGH);

  // Calculate the distance of the object that reflected the pulse
  // (half the bounce time multiplied by the speed of sound)
  // cm = 58.0
  calculatedDistance = echoTime / 58.0;

  // Send back the distance that was calculated
  return calculatedDistance;
  
}
// Rate
float isRate() {
  
  // Variable to store the time it takes for a ping to bounce off an object
  float echoTime;
  // Variable to store the distance calculated from the echo time
  float calculatedDistance;

  // Send out an ultrasonic pulse that's 10ms long
  digitalWrite(iTrigRate, HIGH);
  delayMicroseconds(10);
  digitalWrite(iTrigRate, LOW);

  // Use the pulseIn command to see how long it takes for the
  // pulse to bounce back to the sensor
  echoTime = pulseIn(iEchoRate, HIGH);

  // Calculate the distance of the object that reflected the pulse
  // (half the bounce time multiplied by the speed of sound)
  // cm = 58.0
  calculatedDistance = echoTime / 58.0;

  // Send back the distance that was calculated
  return calculatedDistance;
  
}

getMozzi.ino

// Mozzi
// Update Control
void updateControl(){

  // Variable to store the distance measured by the sensor
  distance = isDistance();
  // Low Threshold
  if ( distance >= pitchLowThreshold) {

    // pitchLowThreshold
    distance = pitchLowThreshold;
    
  }
  // High Threshold
  if ( distance < pitchHighThreshold){
    
    // pitchHighThreshold
    distance = pitchHighThreshold;
    
  }

  // Variable to store the distance measured by the sensor
  rate = isRate();
  // Low Threshold
  if ( rate >= rateLowThreshold) {

    // rateLowThreshold
    rate = rateLowThreshold;
    
  }
  // High Threshold
  if ( rate < rateHighThreshold){
    
    // rateHighThreshold
    rate = rateHighThreshold;
    
  }

  // Read the knob
  // Value is 0-1023
  int knob_value = mozziAnalogRead(KNOB_PIN);

  // Map the knob to carrier frequency
  int carrier_freq = kMapCarrierFreq(knob_value);

  // Calculate the modulation frequency to stay in ratio
  int mod_freq = carrier_freq * mod_ratio;

  // Set the FM oscillator frequencies
  aCarrier.setFreq(carrier_freq);
  aModulator.setFreq(mod_freq);

  // Read the light dependent resistor on the width
  LDR1_PIN = distance;
  int LDR1_value = LDR1_PIN;

  int LDR1_calibrated = kMapIntensity(LDR1_value);

  // Calculate the fm_intensity
  // Shift back to range after 8 bit multiply
  fm_intensity = ((long)LDR1_calibrated * (kIntensityMod.next()+128))>>8;
  
  // Read the light dependent resistor on the speed
  LDR2_PIN = rate;
  int LDR2_value= LDR2_PIN;

  // Use a float here for low frequencies
  float mod_speed = (float)kMapModSpeed(LDR2_value)/1000;

  kIntensityMod.setFreq(mod_speed);
  
}
// Update Audio
int updateAudio()
{

  // Update Audio
  long modulation = aSmoothIntensity.next(fm_intensity) * aModulator.next();
  return aCarrier.phMod(modulation);

}

setup.ino

// Setup
void setup() {

  // Setup HC-SR04
  setupHCSR04();

  // Delay
  delay( 200 );

  // Mozzi Start
  startMozzi();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Research & Development (R & D)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

J. Luc Paquin – Curriculum Vitae – 2022 English & Español
https://www.jlpconsultants.com/luc/

Web: https://www.donluc.com/
Web: https://www.jlpconsultants.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #23: E-Textiles – Coin Cell Battery – Mk08

——

#DonLucElectronics #DonLuc #ETextiles #Wearable #FLORA #BME280 #CCS811 #CoinCell #RTC #SD #Arduino #Project #Programming #Electronics #Microcontrollers #Consultant

——

Coin Cell Battery

——

Coin Cell Battery

——

Coin Cell Battery

——

Coin Cell Battery Holder – 2 x CR2032 (Enclosed)

This is a simple coin cell battery holder that can enclose two CR2032 batteries inside itself, and safely kept closed via two phillips head screws. Each battery holder will run batteries in series, output up to 6V, and is equipped with an On/Off slide switch and two 6″ power wires (one positive and one negative) on the back.

DL2205Mk03

1 x FLORA – Version 1.0a
1 x SparkFun Environmental Combo CCS811/BME280
1 x DS3231 Precision RTC FeatherWing
1 x MicroSD card breakout board+
1 x MicroSD card 8 Gb
1 x CR1220 Coin Cell Battery
1 x LED Red
1 x 220 Ohm
1 x Coin Cell Battery Holder – 2 x CR2032
2 x CR2032 Coin Cell Battery
1 x SparkFun Cerberus USB Cable

FLORA – Version 1.0a

CLK – ICSP 3
DO – ICSP 1
DI – ICSP 4
CS – Digital 10
LER – Digital 6
SCL – Digital 3
SDA – Digital 2
VIN – +5V
VIN – +3.3V
GND – GND

——

DL2205Mk03p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #23: E-Textiles - Coin Cell Battery - Mk08
23-08
DL2205Mk03p.ino
1 x FLORA - Version 1.0a
1 x SparkFun Environmental Combo CCS811/BME280
1 x DS3231 Precision RTC FeatherWing
1 x MicroSD card breakout board+
1 x MicroSD card 8 Gb
1 x CR1220 Coin Cell Battery
1 x LED Red
1 x 220 Ohm
1 x Coin Cell Battery Holder - 2 x CR2032
2 x CR2032 Coin Cell Battery
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Wire
#include <Wire.h>
// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
#include <SparkFunBME280.h>
// SparkFun CCS811 - eCO2 & tVOC
#include <SparkFunCCS811.h>
// Date and time DS3231 RTC
#include <RTClib.h>
// Serial Peripheral Interface (SPI)
#include <SPI.h>
// Secure Digital (SD Card)
#include <SD.h>

// SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
BME280 myBME280;
// Temperature Celsius
float BMEtempC = 0;
// Humidity
float BMEhumid = 0;
// Altitude Meters
float BMEaltitudeM = 0;
// Barometric Pressure
float BMEpressure = 0;

// SparkFun CCS811 - eCO2 & tVOC
// Default I2C Address
#define CCS811_ADDR 0x5B 
CCS811 myCCS811(CCS811_ADDR);
// eCO2
float CCS811CO2 = 0;
// TVOC
float CCS811TVOC = 0;

// Date and time functions using a DS3231 RTC
RTC_DS3231 RTC;
String sDate;
String sTime;

// Secure Digital (SD Card)
const int chipSelect = 10;
String zzzzzz = "";

// LED Red
const int iLEDR = 6;

// Software Version Information
String sver = "23-08";

void loop() {

  // SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
  isBME280();

  // SparkFun CCS811 - eCO2 & tVOC
  isCCS811();

  // Dates and Time
  timeRTC();

  // MicroSD Card
  isSD();

  // 1 Seconds
  delay( 1000 );

}

getBME280.ino

// SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
// isBME280 - Temperature, Humidity, Altitude and Barometric Pressure
void isBME280(){

  // Temperature Celsius
  BMEtempC = myBME280.readTempC();
  // Humidity
  BMEhumid = myBME280.readFloatHumidity() ;
  // Altitude Meters
  BMEaltitudeM = myBME280.readFloatAltitudeMeters();
  // Barometric Pressure
  BMEpressure = myBME280.readFloatPressure();
  
}

getCCS811.ino

// CCS811 - eCO2 & tVOC
// isCCS811 - eCO2 & tVOC
void isCCS811(){

  // This sends the temperature & humidity data to the CCS811
  myCCS811.setEnvironmentalData(BMEhumid, BMEtempC);

  // Calling this function updates the global tVOC and eCO2 variables
  myCCS811.readAlgorithmResults();

  // eCO2 Concentration
  CCS811CO2 = myCCS811.getCO2();
  
  // tVOC Concentration
  CCS811TVOC = myCCS811.getTVOC();
  
}

getRTCDS3231.ino

// DS3231 Precision RTC
// Setup RTC
void setupRTC() {

  // DS3231 Precision RTC   
  RTC.begin();
  if (! RTC.begin()) {
    
    while (1);
    
  }
  
  DateTime now = RTC.now();

  if (RTC.lostPower()) {
    
    // Following line sets the RTC to the date & time this sketch was compiled
    RTC.adjust(DateTime(F(__DATE__), F(__TIME__)));
    // This line sets the RTC with an explicit date & time, for example to set
    // August 2, 2021 at 13:53:0 you would call:
    // RTC.adjust(DateTime(2022, 4, 26, 11, 39, 0));
    
  }
  
}
// timeRTC
void timeRTC() {

    // DS3231 Precision RTC
    sDate = "";
    sTime = "";
    // Date Time
    DateTime now = RTC.now();

    // sData
    sDate += String(now.year(), DEC);
    sDate += "/";
    sDate += String(now.month(), DEC);
    sDate += "/";
    sDate += String(now.day(), DEC);
  
    // sTime
    sTime += String(now.hour(), DEC);
    sTime += ":";
    sTime += String(now.minute(), DEC);
    sTime += ":";
    sTime += String(now.second(), DEC);

}

getSD.ino

// MicroSD Card
// MicroSD Setup
void setupSD() {

    // MicroSD Card
   // See if the card is present and can be initialized:
  if (!SD.begin(chipSelect)) {

    // Don't do anything more:
    while (1);
    
  }

}
// MicroSD Card
void isSD() {

  zzzzzz = "";

  // Version|Date|Time|Temperature Celsius|Humidity|Altitude Meters|Barometric Pressure
  //|eCO2 Concentration|tVOC Concentration|
  zzzzzz = sver + "|" + sDate + "|" + sTime + "|" 
  + BMEtempC + "|" + BMEhumid + "|" + BMEaltitudeM + "|" + BMEpressure + "|"
  + CCS811CO2 + "|" + CCS811TVOC + "|";

  // Open the file. Note that only one file can be open at a time,
  // so you have to close this one before opening another.
  File dataFile = SD.open("DLE22Log.txt", FILE_WRITE);

  // If the file is available, write to it:
  if (dataFile) {
    
    // Write
    dataFile.println( zzzzzz );
    dataFile.close();

  }

}

setup.ino

// Setup
void setup() {

  // Delay
  delay( 100 );
  
  // Set up I2C bus
  Wire.begin();

  // Delay
  delay( 50 );

  // SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
  myBME280.begin();

  // CCS811 - eCO2 & tVOC
  myCCS811.begin();

  // Setup RTC
  setupRTC();

  //MicroSD Card
  setupSD();

  // LED Red
  pinMode( iLEDR , OUTPUT);
  // Turn the LED Red on HIGH
  digitalWrite( iLEDR , HIGH);

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Research & Development (R & D)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

J. Luc Paquin – Curriculum Vitae – 2022 English & Español
https://www.jlpconsultants.com/luc/

Web: https://www.donluc.com/
Web: https://www.jlpconsultants.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #23: E-Textiles – MicroSD Card – Mk07

——

#DonLucElectronics #DonLuc #ETextiles #Wearable #FLORA #BME280 #CCS811 #RTC #SD #Arduino #Project #Programming #Electronics #Microcontrollers #Consultant

——

MicroSD Card

——

MicroSD Card

——

MicroSD Card

——

MicroSD Card Breakout Board+

Not just a simple breakout board, this microSD adapter goes the extra mile designed for ease of use.

  • Onboard 5 Volt – 3 Volt regulator provides 150mA for power-hungry cards.
  • 3 Volt level shifting means you can use this with ease on either 3 Volt or 5 Volt systems.
  • Uses a proper level shifting chip, not resistors, less problems, and faster read/write access.
  • Use 3 or 4 digital pins to read and write 8 Gb of storage.
  • Activity LED lights up when the SD card is being read or written.
  • Push-push socket with card slightly over the edge of the PCB so its easy to insert and remove.
  • Comes with 0.1″ header, unattached, so you can get it on a breadboard or use wires your choice.

To use with an Arduino, connect GND to ground, 5 Volt – 3 Volt to 5 Volt – 3 Volt, CLK to pin 13, DO to pin 12, DI to pin 11, and CS to pin 10. Then you can use the Arduino IDE’s SD library which supports FAT and FAT32 SD cards.

DL2205Mk01

1 x FLORA – Version 1.0a
1 x SparkFun Environmental Combo CCS811/BME280
1 x DS3231 Precision RTC FeatherWing
1 x MicroSD card breakout board+
1 x MicroSD card 8 Gb
1 x CR1220 Coin Cell Battery
1 x LED Red
1 x 220 Ohm
1 x SparkFun Cerberus USB Cable

FLORA – Version 1.0a

CLK – ICSP 3
DO – ICSP 1
DI – ICSP 4
CS – Digital 10
LER – Digital 6
SCL – Digital 3
SDA – Digital 2
VIN – +5V
VIN – +3.3V
GND – GND

——

DL2205Mk01p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #23: E-Textiles - MicroSD Card - Mk07
23-07
DL2205Mk01p.ino
1 x FLORA - Version 1.0a
1 x SparkFun Environmental Combo CCS811/BME280
1 x DS3231 Precision RTC FeatherWing
1 x MicroSD card breakout board+
1 x MicroSD card 8 Gb
1 x CR1220 Coin Cell Battery
1 x LED Red
1 x 220 Ohm
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Wire
#include <Wire.h>
// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
#include <SparkFunBME280.h>
// SparkFun CCS811 - eCO2 & tVOC
#include <SparkFunCCS811.h>
// Date and time DS3231 RTC
#include <RTClib.h>
// Serial Peripheral Interface (SPI)
#include <SPI.h>
// Secure Digital (SD Card)
#include <SD.h>

// SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
BME280 myBME280;
// Temperature Celsius
float BMEtempC = 0;
// Humidity
float BMEhumid = 0;
// Altitude Meters
float BMEaltitudeM = 0;
// Barometric Pressure
float BMEpressure = 0;

// SparkFun CCS811 - eCO2 & tVOC
// Default I2C Address
#define CCS811_ADDR 0x5B 
CCS811 myCCS811(CCS811_ADDR);
// eCO2
float CCS811CO2 = 0;
// TVOC
float CCS811TVOC = 0;

// Date and time functions using a DS3231 RTC
RTC_DS3231 RTC;
String sDate;
String sTime;

// Secure Digital (SD Card)
const int chipSelect = 10;
String zzzzzz = "";

// LED Red
const int iLEDR = 6;

// Software Version Information
String sver = "23-07";

void loop() {

  // SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
  isBME280();

  // SparkFun CCS811 - eCO2 & tVOC
  isCCS811();

  // Dates and Time
  timeRTC();

  // MicroSD Card
  isSD();

  // 1 Seconds
  delay( 1000 );

}

getBME280.ino

// SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
// isBME280 - Temperature, Humidity, Altitude and Barometric Pressure
void isBME280(){

  // Temperature Celsius
  BMEtempC = myBME280.readTempC();
  // Humidity
  BMEhumid = myBME280.readFloatHumidity() ;
  // Altitude Meters
  BMEaltitudeM = myBME280.readFloatAltitudeMeters();
  // Barometric Pressure
  BMEpressure = myBME280.readFloatPressure();
  
}

getCCS811.ino

// CCS811 - eCO2 & tVOC
// isCCS811 - eCO2 & tVOC
void isCCS811(){

  // This sends the temperature & humidity data to the CCS811
  myCCS811.setEnvironmentalData(BMEhumid, BMEtempC);

  // Calling this function updates the global tVOC and eCO2 variables
  myCCS811.readAlgorithmResults();

  // eCO2 Concentration
  CCS811CO2 = myCCS811.getCO2();
  
  // tVOC Concentration
  CCS811TVOC = myCCS811.getTVOC();
  
}

getRTCDS3231.ino

// DS3231 Precision RTC
// Setup RTC
void setupRTC() {

  // DS3231 Precision RTC   
  RTC.begin();
  if (! RTC.begin()) {
    
    while (1);
    
  }
  
  DateTime now = RTC.now();

  if (RTC.lostPower()) {
    
    // Following line sets the RTC to the date & time this sketch was compiled
    RTC.adjust(DateTime(F(__DATE__), F(__TIME__)));
    // This line sets the RTC with an explicit date & time, for example to set
    // August 2, 2021 at 13:53:0 you would call:
    // RTC.adjust(DateTime(2022, 4, 26, 11, 39, 0));
    
  }
  
}
// timeRTC
void timeRTC() {

    // DS3231 Precision RTC
    sDate = "";
    sTime = "";
    // Date Time
    DateTime now = RTC.now();

    // sData
    sDate += String(now.year(), DEC);
    sDate += "/";
    sDate += String(now.month(), DEC);
    sDate += "/";
    sDate += String(now.day(), DEC);
  
    // sTime
    sTime += String(now.hour(), DEC);
    sTime += ":";
    sTime += String(now.minute(), DEC);
    sTime += ":";
    sTime += String(now.second(), DEC);

}

getSD.ino

// MicroSD Card
// MicroSD Setup
void setupSD() {

    // MicroSD Card
   // See if the card is present and can be initialized:
  if (!SD.begin(chipSelect)) {

    // Don't do anything more:
    while (1);
    
  }

}
// MicroSD Card
void isSD() {

  zzzzzz = "";

  // Version|Date|Time|Temperature Celsius|Humidity|Altitude Meters|Barometric Pressure
  //|eCO2 Concentration|tVOC Concentration|
  zzzzzz = sver + "|" + sDate + "|" + sTime + "|" 
  + BMEtempC + "|" + BMEhumid + "|" + BMEaltitudeM + "|" + BMEpressure + "|"
  + CCS811CO2 + "|" + CCS811TVOC + "|";

  // Open the file. Note that only one file can be open at a time,
  // so you have to close this one before opening another.
  File dataFile = SD.open("DLE22Log.txt", FILE_WRITE);

  // If the file is available, write to it:
  if (dataFile) {
    
    // Write
    dataFile.println( zzzzzz );
    dataFile.close();

  }

}

setup.ino

// Setup
void setup() {

  // Delay
  delay( 100 );
  
  // Set up I2C bus
  Wire.begin();

  // Delay
  delay( 50 );

  // SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
  myBME280.begin();

  // CCS811 - eCO2 & tVOC
  myCCS811.begin();

  // Setup RTC
  setupRTC();

  //MicroSD Card
  setupSD();

  // LED Red
  pinMode( iLEDR , OUTPUT);
  // Turn the LED Red on HIGH
  digitalWrite( iLEDR , HIGH);

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Research & Development (R & D)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

J. Luc Paquin – Curriculum Vitae – 2022 English & Español
https://www.jlpconsultants.com/luc/

Web: https://www.donluc.com/
Web: https://www.jlpconsultants.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #23: E-Textiles – DS3231 Precision RTC – Mk06

——

#DonLucElectronics #DonLuc #ETextiles #Wearable #FLORA #MicroOLED #BME280 #CCS811 #RTC #Arduino #Project #Programming #Electronics #Microcontrollers #Consultant

——

DS3231 Precision RTC

——

DS3231 Precision RTC

——

DS3231 Precision RTC

——

DS3231 Precision RTC FeatherWing

A Feather board without ambition is a Feather board without FeatherWings. This is the DS3231 Precision RTC FeatherWing it adds an extremely accurate I2C-integrated Real Time Clock (RTC) with a Temperature Compensated Crystal Oscillator (TCXO). This RTC is the most precise you can get in a small, low power package.

Most RTCs use an external 32kHz timing crystal that is used to keep time with low current draw. And that’s all well and good, but those crystals have slight drift, particularly when the temperature changes, the temperature changes the oscillation frequency very very very slightly but it does add up. This RTC is in a beefy package because the crystal is inside the chip, and right next to the integrated crystal is a temperature sensor. That sensor compensates for the frequency changes by adding or removing clock ticks so that the timekeeping stays on schedule.

With a CR1220 12mm coin cell plugged into the top of the FeatherWing, you can get years of precision time keeping, even when main power is lost. Great for datalogging and clocks or anything where you need to really know the time.

DL2204Mk06

1 x FLORA – Version 1.0a
1 x SparkFun Micro OLED
1 x SparkFun Environmental Combo CCS811/BME280
1 x DS3231 Precision RTC FeatherWing
1 x CR1220 Coin Cell Battery
1 x RGB Smart NeoPixel
1 x Half-Size Breadboard
1 x SparkFun Cerberus USB Cable

FLORA – Version 1.0a

SDA – Digital 2
SCL – Digital 3
NEO – Digital 6
VIN – +5V
GND – GND

——

DL2204Mk06p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #23: E-Textiles - DS3231 Precision RTC - Mk06
23-06
DL2204Mk06p.ino
1 x FLORA - Version 1.0a
1 x SparkFun Micro OLED
1 x SparkFun Environmental Combo CCS811/BME280
1 x DS3231 Precision RTC FeatherWing
1 x CR1220 Coin Cell Battery
1 x RGB Smart NeoPixel
1 x Half-Size Breadboard
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Wire
#include <Wire.h>
// NeoPixels
#include <Adafruit_NeoPixel.h>
// SparkFun Micro OLED
#include <SFE_MicroOLED.h>
// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
#include <SparkFunBME280.h>
// SparkFun CCS811 - eCO2 & tVOC
#include <SparkFunCCS811.h>
// Date and time DS3231 RTC
#include <RTClib.h>

// NeoPixels
// On digital pin 6
#define PIN 6
// NeoPixels NUMPIXELS = 1
#define NUMPIXELS 1
// Pixels
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
// Red
int red = 0;
// Green
int green = 0;
// Blue
int blue = 0;
// Neopix
int iNeo = 0;
// Value
int zz = 0;

// SparkFun Micro OLED
#define PIN_RESET 9
#define DC_JUMPER 1
// I2C declaration
MicroOLED oled(PIN_RESET, DC_JUMPER);

// SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
BME280 myBME280;
// Temperature Celsius
float BMEtempC = 0;
// Humidity
float BMEhumid = 0;
// Altitude Meters
float BMEaltitudeM = 0;
// Barometric Pressure
float BMEpressure = 0;

// SparkFun CCS811 - eCO2 & tVOC
// Default I2C Address
#define CCS811_ADDR 0x5B 
CCS811 myCCS811(CCS811_ADDR);
// eCO2
float CCS811CO2 = 0;
// TVOC
float CCS811TVOC = 0;

// Date and time functions using a DS3231 RTC
RTC_DS3231 RTC;
String sDate;
String sTime;

// Software Version Information
String sver = "23-06";

void loop() {

  // SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
  isBME280();

  // SparkFun CCS811 - eCO2 & tVOC
  isCCS811();

  // FLORA
  isFLORA();

  // Dates and Time
  timeRTC();

  // Micro OLED
  isMicroOLED();
 
}

getBME280.ino

// SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
// isBME280 - Temperature, Humidity, Altitude and Barometric Pressure
void isBME280(){

  // Temperature Celsius
  BMEtempC = myBME280.readTempC();
  // Humidity
  BMEhumid = myBME280.readFloatHumidity() ;
  // Altitude Meters
  BMEaltitudeM = myBME280.readFloatAltitudeMeters();
  // Barometric Pressure
  BMEpressure = myBME280.readFloatPressure();
  
}

getCCS811.ino

// CCS811 - eCO2 & tVOC
// isCCS811 - eCO2 & tVOC
void isCCS811(){

  // This sends the temperature & humidity data to the CCS811
  myCCS811.setEnvironmentalData(BMEhumid, BMEtempC);

  // Calling this function updates the global tVOC and eCO2 variables
  myCCS811.readAlgorithmResults();

  // eCO2 Concentration
  CCS811CO2 = myCCS811.getCO2();
  
  // tVOC Concentration
  CCS811TVOC = myCCS811.getTVOC();
  
}

getFLORA.ino

// FLORA
// isFLORA
void isFLORA() {

  // FLORA = Temperature Celsius
  // BMEtempC

  // FLORA = Temperature Celsius
  if ( BMEtempC >= 50 ) {

    // 40 <= Temperature Celsius < 50~~~
    zz = 2;
    isNUMPIXELS();

  } else if ( BMEtempC >= 40 ) {

    // 30 <= Temperature Celsius < 40
    zz = 3;
    isNUMPIXELS();
    
  }  else if ( BMEtempC >= 30 ) {

    // 20 <= Temperature Celsius < 30
    zz = 4;
    isNUMPIXELS();
    
  } else if ( BMEtempC >= 20 ) {

    // 10 <= Temperature Celsius < 20
    zz = 0;
    isNUMPIXELS();
    
  } else if ( BMEtempC >= 10 ) {

    // ~~~0 <= Temperature Celsius < 10
    zz = 1;
    isNUMPIXELS();
    
  }
    
}

getMicroOLED.ino

// SparkFun Micro OLED
// Setup Micro OLED
void setupMicroOLED() {

  // Initialize the OLED
  oled.begin();
  // Clear the display's internal memory
  oled.clear(ALL);
  // Display what's in the buffer (splashscreen)
  oled.display();

  // Delay 1000 ms
  delay(1000);

  // Clear the buffer.
  oled.clear(PAGE);
  
}
// Micro OLED
void isMicroOLED() {

  // Text Display BME280
  // Clear the display
  oled.clear(PAGE);
  // Set cursor to top-left
  oled.setCursor(0, 0);
  // Set font to type 0
  oled.setFontType(0);
  // Temperature Celsius
  oled.print("T: ");
  oled.print(BMEtempC, 2);
  oled.setCursor(0, 10);
  // Humidity
  oled.print("H: ");
  oled.print(BMEhumid, 0);
  oled.setCursor(0, 20);
  // Altitude Meters
  oled.print("A: ");
  oled.print(BMEaltitudeM, 1);
  oled.setCursor(0, 30);
  // Barometric Pressure
  oled.print("P: ");
  oled.print(BMEpressure, 0);
  oled.display();

  // Delay
  delay( 2000 );

  // Text Display CCS811
  // Clear the display
  oled.clear(PAGE);
  // Set cursor to top-left
  oled.setCursor(0, 0);
  // Set font to type 0
  oled.setFontType(0);
  // Date
  oled.setCursor(0, 0);
  oled.print(sDate);
  // Time
  oled.setCursor(0, 10);
  oled.print(sTime);
  // eCO2 Concentration
  oled.setCursor(0, 20);
  oled.print("C: ");
  oled.print(CCS811CO2, 0);
  // tVOC Concentration
  oled.setCursor(0, 30);
  oled.print("V: ");
  oled.print(CCS811TVOC, 0);  
  oled.display();

  // Delay
  delay( 2000 );

}

getNeopix.ino

// NeoPixels
// Neopix
void isNeopix() 
{ 

    // Pixels
    pixels.setBrightness( 150 );
    // Pixels color takes RGB values, from 0,0,0 up to 255,255,255
    pixels.setPixelColor( iNeo, pixels.Color(red,green,blue) ); 
    // This sends the updated pixel color to the hardware
    pixels.show(); 
    // Delay for a period of time (in milliseconds)
    delay(50);     
  
}
// isNUMPIXELS
void isNUMPIXELS()
{

  // Neopix Value
  switch ( zz ) {  
    case 0:
      // NeoPixels Green
      // Red
      red = 0;
      // Green
      green = 255;
      // Blue
      blue = 0;
      // Neopix
      iNeo = 0;   
      isNeopix();
      break;  
    case 1:
      // NeoPixels Blue
      // Red
      red = 0;
      // Green
      green = 0;
      // Blue
      blue = 255;
      // Neopix
      iNeo = 0;
      isNeopix();
      break;
    case 2:
      // NeoPixels Red
      // Red
      red = 255;
      // Green
      green = 0;
      // Blue
      blue = 0;
      // Neopix
      iNeo = 0;   
      isNeopix();
      break;
    case 3:
      // NeoPixels Yellow
      // Red
      red = 255;
      // Green
      green = 255;
      // Blue
      blue = 0;
      // Neopix
      iNeo = 0;
      isNeopix();
      break;
    case 4:
      // NeoPixels Magenta
      // Red
      red = 255;
      // Green
      green = 0;
      // Blue
      blue = 255;
      // Neopix
      iNeo = 0;
      isNeopix();
      break;
    case 5:
      // NeoPixels Cyan
      // Red
      red = 0;
      // Green
      green = 255;
      // Blue
      blue = 255;
      // Neopix
      iNeo = 0;
      isNeopix();
      break;
    case 6:
      // NeoPixels White
      // Red
      red = 255;
      // Green
      green = 255;
      // Blue
      blue = 255;
      // Neopix
      iNeo = 0;
      isNeopix();    
      break;
  }
  
}
// isNUMPIXELSoff
void isNUMPIXELSoff()
{

   // Black Off
   // NeoPixels
   // Red
   red = 0;
   // Green
   green = 0;
   // Blue
   blue = 0;
   isNeopix();
 
}

getRTCDS3231.ino

// DS3231 Precision RTC
// Setup RTC
void setupRTC() {

  // DS3231 Precision RTC   
  RTC.begin();
  if (! RTC.begin()) {
    while (1);
  }
  
  DateTime now = RTC.now();

  if (RTC.lostPower()) {
    
    // Following line sets the RTC to the date & time this sketch was compiled
    RTC.adjust(DateTime(F(__DATE__), F(__TIME__)));
    // This line sets the RTC with an explicit date & time, for example to set
    // August 2, 2021 at 13:53:0 you would call:
    // RTC.adjust(DateTime(2022, 4, 26, 11, 39, 0));
    
  }
  
}
// timeRTC
void timeRTC() {

    // DS3231 Precision RTC
    sDate = "";
    sTime = "";
    // Date Time
    DateTime now = RTC.now();

    // sData
    sDate += String(now.year(), DEC);
    sDate += "/";
    sDate += String(now.month(), DEC);
    sDate += "/";
    sDate += String(now.day(), DEC);
  
    // sTime
    sTime += String(now.hour(), DEC);
    sTime += ":";
    sTime += String(now.minute(), DEC);
    sTime += ":";
    sTime += String(now.second(), DEC);

}

setup.ino

// Setup
void setup() {

  // NeoPixels
  // This initializes the NeoPixel library
  pixels.begin();
  // Delay for a period of time (in milliseconds)
  delay(50);
  // isNUMPIXELS Off
  isNUMPIXELSoff();

  // Set up I2C bus
  Wire.begin();

  // Delay for a period of time (in milliseconds)
  delay(50);
  // SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
  myBME280.begin();

  // CCS811 - eCO2 & tVOC
  myCCS811.begin();

  // Setup RTC
  setupRTC();

  // Setup Micro OLED
  setupMicroOLED();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Research & Development (R & D)
  • Desktop Applications (Windows, OSX, Linux, Multi-OS, Multi-Tier, etc…)
  • Mobile Applications (Android, iOS, Blackberry, Windows Mobile, Windows CE, etc…)
  • Web Applications (LAMP, Scripting, Java, ASP, ASP.NET, RoR, Wakanda, etc…)
  • Social Media Programming & Integration (Facebook, Twitter, YouTube, Pinterest, etc…)
  • Content Management Systems (WordPress, Drupal, Joomla, Moodle, etc…)
  • Bulletin Boards (phpBB, SMF, Vanilla, jobberBase, etc…)
  • eCommerce (WooCommerce, OSCommerce, ZenCart, PayPal Shopping Cart, etc…)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics
  • DOS, Windows, OSX, Linux, iOS, Android, Multi-OS
  • Linux-Apache-PHP-MySQL

Follow Us

J. Luc Paquin – Curriculum Vitae – 2022 English & Español
https://www.jlpconsultants.com/luc/

Web: https://www.donluc.com/
Web: https://www.jlpconsultants.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #23: E-Textiles – ams CCS811 – Mk05

——

#DonLucElectronics #DonLuc #ETextiles #Wearable #FLORA #MicroOLED #BME280 #CCS811 #Arduino #Project #Programming #Electronics #Microcontrollers #Consultant

——

ams CCS811

——

ams CCS811

——

ams CCS811

——

ams CCS811 Ultra-Low Power Digital Gas Sensor for Monitoring Indoor Air Quality

The CCS811 is an ultra-low power digital gas sensor solution which integrates a metal oxide (MOX) gas sensor to detect a wide range of Volatile Organic Compounds (VOCs) for indoor air quality monitoring with a microcontroller unit (MCU), which includes an Analog-to-Digital converter (ADC), and an I²C interface.

CCS811 is based on ams unique micro-hotplate technology which enables a highly reliable solution for gas sensors, very fast cycle times and a significant reduction in average power consumption. The integrated MCU manages the sensor drive modes and raw sensor data measured while detecting VOCs. The I²C digital interface significantly simplifies the hardware and software design, enabling a faster time to market.

CCS811 supports intelligent algorithms to process raw sensor measurements to output a TVOC value or equivalent CO2 (eCO2) levels, where the main cause of VOCs is from humans. CCS811 supports multiple measurement modes that have been optimised for low-power consumption during an active sensor measurement and idle mode extending battery life in portable applications.

Applications

This device can be mainly used for indoor air quality monitoring in:

  • Smartphones
  • Wearables
  • Home and building automation
  • Accessories

DL2204Mk05

1 x FLORA – Version 1.0a
1 x SparkFun Micro OLED
1 x SparkFun Environmental Combo CCS811/BME280
1 x RGB Smart NeoPixel
1 x Half-Size Breadboard
1 x SparkFun Cerberus USB Cable

FLORA – Version 1.0a

NEO – Digital 6
SDA – Analog A2
SCL – Analog A3
VIN – +5V
GND – GND

DL2204Mk05p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #23: E-Textiles - ams CCS811 - Mk05
23-05
DL2204Mk05p.ino
1 x FLORA - Version 1.0a
1 x SparkFun Micro OLED
1 x SparkFun Environmental Combo CCS811/BME280
1 x RGB Smart NeoPixel
1 x Half-Size Breadboard
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Wire
#include <Wire.h>
// NeoPixels
#include <Adafruit_NeoPixel.h>
// SparkFun Micro OLED
#include <SFE_MicroOLED.h>
// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
#include <SparkFunBME280.h>
// SparkFun CCS811 - eCO2 & tVOC
#include <SparkFunCCS811.h>

// NeoPixels
// On digital pin 6
#define PIN 6
// NeoPixels NUMPIXELS = 1
#define NUMPIXELS 1
// Pixels
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
// Red
int red = 0;
// Green
int green = 0;
// Blue
int blue = 0;
// Neopix
int iNeo = 0;
// Value
int zz = 0;

// SparkFun Micro OLED
#define PIN_RESET 9
#define DC_JUMPER 1
// I2C declaration
MicroOLED oled(PIN_RESET, DC_JUMPER);

// SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
BME280 myBME280;
// Temperature Celsius
float BMEtempC = 0;
// Humidity
float BMEhumid = 0;
// Altitude Meters
float BMEaltitudeM = 0;
// Barometric Pressure
float BMEpressure = 0;

// SparkFun CCS811 - eCO2 & tVOC
// Default I2C Address
#define CCS811_ADDR 0x5B 
CCS811 myCCS811(CCS811_ADDR);
// eCO2
float CCS811CO2 = 0;
// TVOC
float CCS811TVOC = 0;

// Software Version Information
String sver = "23-05";

void loop() {

  // SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
  isBME280();

  // SparkFun CCS811 - eCO2 & tVOC
  isCCS811();

  // FLORA
  isFLORA();

  // Micro OLED
  isMicroOLED();
 
}

getBME280.ino

// SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
// isBME280 - Temperature, Humidity, Altitude and Barometric Pressure
void isBME280(){

  // Temperature Celsius
  BMEtempC = myBME280.readTempC();
  // Humidity
  BMEhumid = myBME280.readFloatHumidity();
  // Altitude Meters
  BMEaltitudeM = myBME280.readFloatAltitudeMeters();
  // Barometric Pressure
  BMEpressure = myBME280.readFloatPressure();
  
}

getCCS811.ino

// CCS811 - eCO2 & tVOC
// isCCS811 - eCO2 & tVOC
void isCCS811(){

  // This sends the temperature & humidity data to the CCS811
  myCCS811.setEnvironmentalData(BMEhumid, BMEtempC);

  // Calling this function updates the global tVOC and eCO2 variables
  myCCS811.readAlgorithmResults();

  // eCO2 Concentration
  CCS811CO2 = myCCS811.getCO2();
  
  // tVOC Concentration
  CCS811TVOC = myCCS811.getTVOC();
  
}

getFLORA.ino

// FLORA
// isFLORA
void isFLORA() {

  // FLORA = Temperature Celsius
  // BMEtempC

  // FLORA = Temperature Celsius
  if ( BMEtempC >= 50 ) {

    // 40 <= Temperature Celsius < 50~~~
    zz = 2;
    isNUMPIXELS();

  } else if ( BMEtempC >= 40 ) {

    // 30 <= Temperature Celsius < 40
    zz = 3;
    isNUMPIXELS();
    
  }  else if ( BMEtempC >= 30 ) {

    // 20 <= Temperature Celsius < 30
    zz = 4;
    isNUMPIXELS();
    
  } else if ( BMEtempC >= 20 ) {

    // 10 <= Temperature Celsius < 20
    zz = 0;
    isNUMPIXELS();
    
  } else if ( BMEtempC >= 10 ) {

    // ~~~0 <= Temperature Celsius < 10
    zz = 1;
    isNUMPIXELS();
    
  }
    
}

getMicroOLED.ino

// SparkFun Micro OLED
// Setup Micro OLED
void setupMicroOLED() {

  // Initialize the OLED
  oled.begin();
  // Clear the display's internal memory
  oled.clear(ALL);
  // Display what's in the buffer (splashscreen)
  oled.display();

  // Delay 1000 ms
  delay(1000);

  // Clear the buffer.
  oled.clear(PAGE);
  
}
// Micro OLED
void isMicroOLED() {

  // Text Display BME280
  // Clear the display
  oled.clear(PAGE);
  // Set cursor to top-left
  oled.setCursor(0, 0);
  // Set font to type 0
  oled.setFontType(0);
  // Temperature Celsius
  oled.print("T: ");
  oled.print(BMEtempC);
  oled.setCursor(0, 10);
  // Humidity
  oled.print("H: ");
  oled.print(BMEhumid);
  oled.setCursor(0, 20);
  // Altitude Meters
  oled.print("A: ");
  oled.print(BMEaltitudeM);
  oled.setCursor(0, 30);
  // Barometric Pressure
  oled.print("P: ");
  oled.print(BMEpressure);
  oled.display();

  // Delay
  delay( 2000 );

  // Text Display CCS811
  // Clear the display
  oled.clear(PAGE);
  // Set cursor to top-left
  oled.setCursor(0, 0);
  // Set font to type 0
  oled.setFontType(0);
  // eCO2 Concentration
  oled.print("eCO2");
  oled.setCursor(0, 10);
  oled.print(CCS811CO2);
  // tVOC Concentration
  oled.setCursor(0, 20);
  oled.print("tVOC");
  oled.setCursor(0, 30);
  oled.print(CCS811TVOC);
  oled.display();

  // Delay
  delay( 2000 );

}

getNeopix.ino

// NeoPixels
// Neopix
void isNeopix() 
{ 

    // Pixels
    pixels.setBrightness( 150 );
    // Pixels color takes RGB values, from 0,0,0 up to 255,255,255
    pixels.setPixelColor( iNeo, pixels.Color(red,green,blue) ); 
    // This sends the updated pixel color to the hardware
    pixels.show(); 
    // Delay for a period of time (in milliseconds)
    delay(50);     
  
}
// isNUMPIXELS
void isNUMPIXELS()
{

  // Neopix Value
  switch ( zz ) {  
    case 0:
      // NeoPixels Green
      // Red
      red = 0;
      // Green
      green = 255;
      // Blue
      blue = 0;
      // Neopix
      iNeo = 0;   
      isNeopix();
      break;  
    case 1:
      // NeoPixels Blue
      // Red
      red = 0;
      // Green
      green = 0;
      // Blue
      blue = 255;
      // Neopix
      iNeo = 0;
      isNeopix();
      break;
    case 2:
      // NeoPixels Red
      // Red
      red = 255;
      // Green
      green = 0;
      // Blue
      blue = 0;
      // Neopix
      iNeo = 0;   
      isNeopix();
      break;
    case 3:
      // NeoPixels Yellow
      // Red
      red = 255;
      // Green
      green = 255;
      // Blue
      blue = 0;
      // Neopix
      iNeo = 0;
      isNeopix();
      break;
    case 4:
      // NeoPixels Magenta
      // Red
      red = 255;
      // Green
      green = 0;
      // Blue
      blue = 255;
      // Neopix
      iNeo = 0;
      isNeopix();
      break;
    case 5:
      // NeoPixels Cyan
      // Red
      red = 0;
      // Green
      green = 255;
      // Blue
      blue = 255;
      // Neopix
      iNeo = 0;
      isNeopix();
      break;
    case 6:
      // NeoPixels White
      // Red
      red = 255;
      // Green
      green = 255;
      // Blue
      blue = 255;
      // Neopix
      iNeo = 0;
      isNeopix();    
      break;
  }
  
}
// isNUMPIXELSoff
void isNUMPIXELSoff()
{

   // Black Off
   // NeoPixels
   // Red
   red = 0;
   // Green
   green = 0;
   // Blue
   blue = 0;
   isNeopix();
 
}

setup.ino

// Setup
void setup() {

  // NeoPixels
  // This initializes the NeoPixel library
  pixels.begin();
  // Delay for a period of time (in milliseconds)
  delay(50);
  // isNUMPIXELS Off
  isNUMPIXELSoff();

  // Set up I2C bus
  Wire.begin();

  // Delay for a period of time (in milliseconds)
  delay(50);
  // SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
  myBME280.begin();

  // CCS811 - eCO2 & tVOC
  myCCS811.begin();

  // Setup Micro OLED
  setupMicroOLED();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Research & Development (R & D)
  • Desktop Applications (Windows, OSX, Linux, Multi-OS, Multi-Tier, etc…)
  • Mobile Applications (Android, iOS, Blackberry, Windows Mobile, Windows CE, etc…)
  • Web Applications (LAMP, Scripting, Java, ASP, ASP.NET, RoR, Wakanda, etc…)
  • Social Media Programming & Integration (Facebook, Twitter, YouTube, Pinterest, etc…)
  • Content Management Systems (WordPress, Drupal, Joomla, Moodle, etc…)
  • Bulletin Boards (phpBB, SMF, Vanilla, jobberBase, etc…)
  • eCommerce (WooCommerce, OSCommerce, ZenCart, PayPal Shopping Cart, etc…)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics
  • DOS, Windows, OSX, Linux, iOS, Android, Multi-OS
  • Linux-Apache-PHP-MySQL

Follow Us

J. Luc Paquin – Curriculum Vitae – 2022 English & Español
https://www.jlpconsultants.com/luc/

Web: https://www.donluc.com/
Web: https://www.jlpconsultants.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #23: E-Textiles – Bosch Sensortec BME280 – Mk04

——

#DonLucElectronics #DonLuc #ETextiles #Wearable #FLORA #MicroOLED #BME280 #Arduino #Project #Programming #Electronics #Microcontrollers #Consultant

——

Bosch Sensortec BME280

——

Bosch Sensortec BME280

——

Bosch Sensortec BME280

——

Bosch Sensortec BME280 – Combined Humidity And Pressure Sensor

The BME280 is as combined digital humidity, pressure and temperature sensor based on proven sensing principles. Its small dimensions and its low power consumption allow the implementation in battery driven devices such as handsets, GPS modules or watches. The BME280 is register and performance compatible to the Bosch Sensortec BMP280 digital pressure sensor. The BME280 achieves high performance in all applications requiring humidity and pressure measurement. These emerging applications of home automation control, in-door navigation, E-Textiles, fitness as well as GPS refinement require a high accuracy and a low TCO at the same time. The humidity sensor provides an extremely fast response time for fast context awareness applications and high overall accuracy over a wide temperature range. The integrated temperature sensor has been optimized for lowest noise and highest resolution. Its output is used for temperature compensation of the pressure and humidity sensors and can also be used for estimation of the ambient temperature. The sensor provides both SPI and I²C interfaces.

Typical Application

  • Context awareness, e.g. skin detection, room change detection
  • Fitness monitoring / well-being
  • Warning regarding dryness or high temperatures
  • Measurement of volume and air flow
  • Home automation control
  • Control heating, venting, air conditioning (HVAC)
  • Internet of Things
  • GPS enhancement (e.g. time-to-first-fix improvement, dead reckoning, slope detection)
  • Indoor navigation (e.g. change of floor detection, elevator detection)
  • Outdoor navigation, leisure and sports applications
  • Weather forecast
  • Vertical velocity indication (rise/sink speed)
  • E-Textiles and Wearable

Target Devices

  • Handsets such as mobile phones, tablet PCs, GPS devices
  • Navigation systems
  • Gaming (e.g flying toys)
  • Camera (DSC, video)
  • Home weather stations
  • Flying toys
  • Watches
  • E-Textiles
  • Wearable

DL2204Mk04

1 x FLORA – Version 1.0a
1 x SparkFun Micro OLED
1 x SparkFun Environmental Combo CCS811/BME280
1 x RGB Smart NeoPixel
1 x Half-Size Breadboard
1 x SparkFun Cerberus USB Cable

FLORA – Version 1.0a

NEO – Digital 6
SDA – Analog A2
SCL – Analog A3
VIN – +5V
GND – GND

DL2204Mk04p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #23: E-Textiles - BME280 - Mk04
23-04
DL2204Mk04p.ino
1 x FLORA - Version 1.0a
1 x SparkFun Micro OLED
1 x SparkFun Environmental Combo CCS811/BME280
1 x RGB Smart NeoPixel
1 x Half-Size Breadboard
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Wire
#include <Wire.h>
// NeoPixels
#include <Adafruit_NeoPixel.h>
// SparkFun Micro OLED
#include <SFE_MicroOLED.h>
// SparkFun BME280 - Humidity, Temperature, Altitude and Barometric Pressure
#include <SparkFunBME280.h>

// NeoPixels
// On digital pin 6
#define PIN 6
// NeoPixels NUMPIXELS = 1
#define NUMPIXELS 1
// Pixels
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
// Red
int red = 0;
// Green
int green = 0;
// Blue
int blue = 0;
// Neopix
int iNeo = 0;
// Value
int zz = 0;

// SparkFun Micro OLED
#define PIN_RESET 9
#define DC_JUMPER 1
// I2C declaration
MicroOLED oled(PIN_RESET, DC_JUMPER);

// SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
BME280 myBME280;
// Temperature Celsius
float BMEtempC = 0;
// Humidity
float BMEhumid = 0;
// Altitude Meters
float BMEaltitudeM = 0;
// Barometric Pressure
float BMEpressure = 0;

// Software Version Information
String sver = "23-04";

void loop() {

  // SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
  isBME280();

  // FLORA
  isFLORA();

  // Micro OLED
  isMicroOLED();

  // Delay
  delay( 1000 );
  
}

getBME280.ino

// SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
// isBME280 - Temperature, Humidity, Altitude and Barometric Pressure
void isBME280(){

  // Temperature Celsius
  BMEtempC = myBME280.readTempC();
  // Humidity
  BMEhumid = myBME280.readFloatHumidity();
  // Altitude Meters
  BMEaltitudeM = myBME280.readFloatAltitudeMeters();
  // Barometric Pressure
  BMEpressure = myBME280.readFloatPressure();
  
}

getFLORA.ino

// FLORA
// isFLORA
void isFLORA() {

  // FLORA = Temperature Celsius
  // BMEtempC

  // FLORA = Temperature Celsius
  if ( BMEtempC >= 50 ) {

    // 40 <= Temperature Celsius < 50~~~
    zz = 2;
    isNUMPIXELS();

  } else if ( BMEtempC >= 40 ) {

    // 30 <= Temperature Celsius < 40
    zz = 3;
    isNUMPIXELS();
    
  }  else if ( BMEtempC >= 30 ) {

    // 20 <= Temperature Celsius < 30
    zz = 4;
    isNUMPIXELS();
    
  } else if ( BMEtempC >= 20 ) {

    // 10 <= Temperature Celsius < 20
    zz = 0;
    isNUMPIXELS();
    
  } else if ( BMEtempC >= 10 ) {

    // ~~~0 <= Temperature Celsius < 10
    zz = 1;
    isNUMPIXELS();
    
  }
    
}

getMicroOLED.ino

// SparkFun Micro OLED
// Setup Micro OLED
void setupMicroOLED() {

  // Initialize the OLED
  oled.begin();
  // Clear the display's internal memory
  oled.clear(ALL);
  // Display what's in the buffer (splashscreen)
  oled.display();

  // Delay 1000 ms
  delay(1000);

  // Clear the buffer.
  oled.clear(PAGE);
  
}
// Micro OLED
void isMicroOLED() {

  // Text Display BME280
  // Clear the display
  oled.clear(PAGE);
  // Set cursor to top-left
  oled.setCursor(0, 0);
  // Set font to type 0
  oled.setFontType(0);
  // Temperature Celsius
  oled.print("T: ");
  oled.print(BMEtempC);
  oled.setCursor(0, 10);
  // Humidity
  oled.print("H: ");
  oled.print(BMEhumid);
  oled.setCursor(0, 20);
  // Altitude Meters
  oled.print("A: ");
  oled.print(BMEaltitudeM);
  oled.setCursor(0, 30);
  // Barometric Pressure
  oled.print("P: ");
  oled.print(BMEpressure);
  oled.display();

}

getNeopix.ino

// NeoPixels
// Neopix
void isNeopix() 
{ 

    // Pixels
    pixels.setBrightness( 150 );
    // Pixels color takes RGB values, from 0,0,0 up to 255,255,255
    pixels.setPixelColor( iNeo, pixels.Color(red,green,blue) ); 
    // This sends the updated pixel color to the hardware
    pixels.show(); 
    // Delay for a period of time (in milliseconds)
    delay(50);     
  
}
// isNUMPIXELS
void isNUMPIXELS()
{

  // Neopix Value
  switch ( zz ) {  
    case 0:
      // NeoPixels Green
      // Red
      red = 0;
      // Green
      green = 255;
      // Blue
      blue = 0;
      // Neopix
      iNeo = 0;   
      isNeopix();
      break;  
    case 1:
      // NeoPixels Blue
      // Red
      red = 0;
      // Green
      green = 0;
      // Blue
      blue = 255;
      // Neopix
      iNeo = 0;
      isNeopix();
      break;
    case 2:
      // NeoPixels Red
      // Red
      red = 255;
      // Green
      green = 0;
      // Blue
      blue = 0;
      // Neopix
      iNeo = 0;   
      isNeopix();
      break;
    case 3:
      // NeoPixels Yellow
      // Red
      red = 255;
      // Green
      green = 255;
      // Blue
      blue = 0;
      // Neopix
      iNeo = 0;
      isNeopix();
      break;
    case 4:
      // NeoPixels Magenta
      // Red
      red = 255;
      // Green
      green = 0;
      // Blue
      blue = 255;
      // Neopix
      iNeo = 0;
      isNeopix();
      break;
    case 5:
      // NeoPixels Cyan
      // Red
      red = 0;
      // Green
      green = 255;
      // Blue
      blue = 255;
      // Neopix
      iNeo = 0;
      isNeopix();
      break;
    case 6:
      // NeoPixels White
      // Red
      red = 255;
      // Green
      green = 255;
      // Blue
      blue = 255;
      // Neopix
      iNeo = 0;
      isNeopix();    
      break;
  }
  
}
// isNUMPIXELSoff
void isNUMPIXELSoff()
{

   // Black Off
   // NeoPixels
   // Red
   red = 0;
   // Green
   green = 0;
   // Blue
   blue = 0;
   isNeopix();
 
}

setup.ino

// Setup
void setup() {

  // NeoPixels
  // This initializes the NeoPixel library
  pixels.begin();
  // Delay for a period of time (in milliseconds)
  delay(50);
  // isNUMPIXELS Off
  isNUMPIXELSoff();

  // Set up I2C bus
  Wire.begin();

  // Delay for a period of time (in milliseconds)
  delay(50);
  
  // SparkFun BME280 - Temperature, Humidity, Altitude and Barometric Pressure
  myBME280.begin();

  // Setup Micro OLED
  setupMicroOLED();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Research & Development (R & D)
  • Desktop Applications (Windows, OSX, Linux, Multi-OS, Multi-Tier, etc…)
  • Mobile Applications (Android, iOS, Blackberry, Windows Mobile, Windows CE, etc…)
  • Web Applications (LAMP, Scripting, Java, ASP, ASP.NET, RoR, Wakanda, etc…)
  • Social Media Programming & Integration (Facebook, Twitter, YouTube, Pinterest, etc…)
  • Content Management Systems (WordPress, Drupal, Joomla, Moodle, etc…)
  • Bulletin Boards (phpBB, SMF, Vanilla, jobberBase, etc…)
  • eCommerce (WooCommerce, OSCommerce, ZenCart, PayPal Shopping Cart, etc…)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics
  • DOS, Windows, OSX, Linux, iOS, Android, Multi-OS
  • Linux-Apache-PHP-MySQL

Follow Us

J. Luc Paquin – Curriculum Vitae – 2022 English & Español
https://www.jlpconsultants.com/luc/

Web: https://www.donluc.com/
Web: https://www.jlpconsultants.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Categories
Archives